

IBI GROUP 25200 Telegraph Road – Suite 300 Southfield MI 48033 USA Tel: 248 936 8000 fax: 248 936 8111 **ibigroup.com**

Date: 2021-11-30

Planning Department **Superior Charter Township** 3040 North Prospect Ypsilanti, MI 48198 Phone: +1 734 482 6099 Fax: +1 734 482 3842 planning@superior-twp.org

RE: Area Plan Amendment - Hyundai Safety Testing and Investigation Laboratory Hyundai America Technical Center, Inc. 6800 Geddes Rd. Superior Charter Township, MI 48198 IBI Group Project #: 134894

Dear Planning Department:

IBI Group is pleased to submit the attached petition for Area Plan Amendment for Hyundai pursuant of Superior Charter Township, Washtenaw County, Michigan Zoning Ordinance No. 174 Article 10.

Our package submitted includes: cover letter, area plan petition form, cover sheet, general site plan, general notes, existing conditions plan, site plan, utility plan, concept landscape plan, concept building elevations, geotechnical report (Appendix A), boundary survey (Appendix B), steam and wetland delineation report (Appendix C), threatened and endangered species memo (Appendix D), tree survey memo (Appendix E), and topographic survey (Appendix F).

Thank you for the opportunity and please contact us with any requests.

Sincerely,

David C. Kassab Project Manager Office: +1 248 936 8000 ext. 51016 Cell: +1 586 747 9125 david.kassab@ibigroup.com

 IBI GROUP

 25200 Telegraph Road – Suite 300

 Southfield MI 48033 USA

 Tel: 248 936 8000 fax: 248 936 8111

 ibigroup.com

Appendix A

Geotechnical Report

PRELIMINARY GEOTECHNICAL EVALUATION REPORT

HATCI R&D CENTER | CRASH BUILDING & TEST TRACK SUPERIOR TOWNSHIP, MICHIGAN

SME Project Number: 087829.00 November 11, 2021

The Kramer Building 43980 Plymouth Oaks Blvd. Plymouth, MI 48170-2584

T (734) 454-9900

www.sme-usa.com

November 11, 2021

Mr. David Kassab, PMP IBI Group 25200 Telegraph Road Suite 300 Southfield, Michigan 48033

Via E-mail: <u>david.kassab@ibigroup.com</u> (PDF file)

RE: Preliminary Geotechnical Evaluation Report HATCI R&D Center | Crash Building & Test Track 6800 Geddes Road Superior Township, Michigan 48198 SME Project No. 087829.00

Dear Mr. Kassab:

We have completed the preliminary geotechnical evaluation for the HATCI R&D Center | Crash Building and Test Track project located in Superior Township, Michigan. This report presents the results of our observations and analyses, and our geotechnical engineering recommendations based on the information disclosed by the borings.

We appreciate the opportunity to be of service. If you have questions or require additional information, please contact me.

Sincerely,

SME

Jeremy S. Wahlstrom, PE Project Manager / Project Engineer

TABLE OF CONTENTS

1. INTRODUCTION	. 1
1.1 SITE CONDITIONS	.1
1.2 PROJECT DESCRIPTION	.2
2. EVALUATION PROCEDURES	2
2.1 FIELD EXPLORATION	.2
2.2 LABORATORY TESTING	.3
3. SUBSURFACE CONDITIONS	3
3.1 SOIL CONDITIONS	.3
3.2 GROUNDWATER CONDITIONS	.5
4. ANALYSIS AND RECOMMENDATIONS	6
4.1 SITE PREPARATION AND EARTHWORK	.6
4.1.1 EXISTING FILL CONSIDERATIONS	. 6
4.1.2 SITE SUBGRADE PREPARATION	, 8
4.1.3 SUBGRADE SETTLEMENT	. 9
4.1.4 SUBGRADE PREPARATION FOR FLOOR SLABS	11
4.1.5 ENGINEERED FILL REQUIREMENTS	11
4.2 SHALLOW FOUNDATIONS	12
4.3 RETAINING WALLS AND DRAINAGE	14
4.4 SEISMIC SITE CLASS	14
4.5 CONSTRUCTION CONSIDERATIONS	15
5. SIGNATURES 1	15

APPENDIX A

BORING LOCATION DIAGRAM (FIGURE NO. 1) BORING LOG TERMINOLOGY BORING LOGS (B201–B207 AND P201-P210) UNCONFINED COMPRESSIVE STRENGTH TEST RESULTS (2 SHEETS) CONSOLIDATION TEST RESULTS (2 SHEETS) ATTERBERG LIMITS TEST RESULTS (2 SHEETS)

APPENDIX B

RELEVANT DATA FROM PREVIOUS GEOTECHNICAL EVALUATION REPORT (SME PROJECT NO. 044853.00) DATED AUGUST 7, 2003 – BORING LOCATION DIAGRAM AND BORING LOGS (B1-B12)

APPENDIX C

RELEVANT DATA FROM PREVIOUS GEOTECHNICAL EVALUATION REPORT (SME PROJECT NO. 044853.00) DATED MARCH 4, 2004 – BORING LOCATION DIAGRAM AND BORING LOGS (B101-B109)

APPENDIX D

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL ENGINEERING REPORT GENERAL COMMENTS LABORATORY TESTING PROCEDURES

1. INTRODUCTION

This report presents the results of the preliminary geotechnical evaluation performed by SME for the HATCI R&D Center | Crash Building and Test Track project. We performed this evaluation in general accordance with the scope of services outlined in SME Proposal No. P03040.21, dated September 27, 2021. Our services for this evaluation were authorized by IBI Group, Inc. To assist with our evaluation and preparation of this report, SME reviewed an, "Area Plan," drawing set (11 Sheets) dated October 27, 2021, prepared by IBI.

The project is in active planning stages and details about the planned structures (e.g., design elevations, specific locations, loads, and settlement tolerances) have not been finalized. Accordingly, the recommendations of this report should be considered preliminary for the purposes of addressing the feasibility of developing the site, and the geotechnical considerations affecting the design, construction and cost of site development. SME shall prepare a final geotechnical evaluation report after reviewing finalized design information, conducting additional site evaluations (if required), and performing engineering analyses based on the geotechnical conditions encountered at the site.

1.1 SITE CONDITIONS

The project site consists of the southern portion of the Hyundai-Kia America Technical Center, Inc. (HATCI) property located at 6800 Geddes Road in Superior Township, Michigan. The site area is generally covered with wild grass vegetation and contains densely wooded areas. The Snidecare Drain is located along the northwestern perimeter of the site and flows from northeast to southwest towards the Huron River (located about ½-mile away). The approximate location of the site is depicted on the Boring Location Diagram (Figure No.1), included in Appendix A. An aerial image depicting recent site conditions along with the soil borings performed for this project is provided below.

IMAGE 1 – SITE AERIAL DATED MARCH 19, 2021

SME reviewed publicly available documents as part of our evaluation, including aerial photographs and topographic maps dating back to the 1900's. Based on our review, the site appears to have been utilized as agricultural farmland prior to construction of the current HATCI development in the mid-2000's. Relatively small structures (likely single-family houses and barns associated with the agricultural usage) were previously located along Leforge Road along the eastern site perimeter. We are not aware of any additional previous site development or usage (e.g., structures, utilities, etc.).

Based on topographic data illustrated on the provided drawing, we understand the site grades from east to west, with ground surface elevations generally ranging from about 800 to 810 feet along Leforge Road to about 780 feet along the Snidecar Drain. However, intermittent hills are located throughout the site (including within the planned building footprints and pavement areas) where the ground surface elevations peak at about 820 to 825 feet. These hills are reportedly related to previous soil stockpiling from the original building construction.

1.2 PROJECT DESCRIPTION

The project consists of two new research buildings along with associated infrastructure (e.g., pavements, utilities, retaining walls, stormwater basins, etc.). The approximate locations of the planned development features are shown on the Boring Location Diagram (Figure No. 1) included in Appendix A.

The buildings will be single-story, slab-on-grade structures with footprint areas of about 60,000 and 30,000 square-feet (for the northern and southern buildings, respectively). Based on our experience with similar types of projects, we anticipate structural loads will include maximum column loads of about 300 kips and maximum wall loads of 5 kips per lineal foot. The northern building will have finished floor elevation of 805 feet. The finished floor elevation of the southern building has not been determined at this time. Existing grade levels within the planned building footprints currently range from about 798 to 822 feet (for the northern building) and from about 792 to 817 feet (for the southern building). Accordingly, we anticipate relatively aggressive earthwork will be required to established subgrade levels within the planned development areas, including cuts and fills of up to about 15 to 20 feet in some areas.

The new access drives and parking lots are anticipated to consist of asphalt pavement with concrete curb-and-gutter. Based on the anticipated site grading requirements, permanent retaining walls may be required in select areas. A stormwater detention pond is planned for the northwest portion of the site (near the Snidecar Drain). The pond has a footprint area of about 40,000 square-feet.

2. EVALUATION PROCEDURES

2.1 FIELD EXPLORATION

SME completed seventeen borings (designated B201 through B207 and P201 through P210) at the site over the period of October 5 through 7, 2021. The borings were advanced to depths of 10 to 35 feet each. A total of 315 lineal feet of drilling was performed for this evaluation. The approximate as-drilled boring locations are shown on Figure No. 1.

SME determined the planned number, depth, and locations of the borings and staked the planned boring locations in the field using a GPS unit. SME estimated the existing surface elevations at the as-drilled boring locations to the nearest 1-foot using available topographic data shown on the provided drawing.

The borings were advanced with an ATV track-mounted, rotary drill rig using continuous-flight augers. The borings included soil sampling based upon the Split-Barrel Sampling procedure. Portions of the recovered split-barrel samples were sealed in glass jars. The Shelby tubes were sealed with tape in the field.

Groundwater level observations in the boreholes were recorded during drilling and immediately after completion of drilling. The boreholes were backfilled with auger cuttings after completion and collection of groundwater readings. Therefore, long-term groundwater observations are not available from the borings.

Soil samples recovered from the field exploration were returned to the SME laboratory for further observation and testing.

2.2 LABORATORY TESTING

The laboratory testing program consisted of visual soil classification on recovered samples in general accordance with ASTM D-2488. We also performed the following laboratory tests:

- Moisture content and dry density
- Hand penetrometer and/or Torvane shear strength
- Unconfined compression strength of cohesive soil samples
- Loss-on-ignition
- Atterberg Limits determination
- Loss-by-wash
- Consolidation

Based on the laboratory testing, we assigned a group symbol to the various soil strata encountered based on the Unified Soil Classification System (USCS).

Upon completion of the laboratory testing, we prepared boring logs including the soil descriptions, penetration resistances, pertinent field observations, the results of the laboratory testing, and the existing ground surface elevations. The boring logs are included in Appendix A. Explanations of symbols and terms used on the boring logs are provided on the Boring Log Terminology sheet included in Appendix A.

Soil samples are normally retained in our laboratory for 60 days and are then disposed, unless instructed otherwise.

3. SUBSURFACE CONDITIONS

3.1 SOIL CONDITIONS

The soil conditions encountered at the boring locations generally consisted of surficial topsoil overlying existing fill (at previously mentioned mounded areas) underlain by natural cohesive clays and clayey silts extending to the explored depths of the borings. Interbedded layers of granular sands and sandy silts were frequently present within the overall cohesive soil profile. We provide a summary of the materials encountered at the boring locations, beginning at the existing ground surface and proceeding downward, below.

STRATUM 1 – SURFICIAL MATERIALS

The surficial topsoil at the boring locations ranged from 4 inches to 2 feet in thickness. However, the topsoil was generally about 6 to 8 inches thick.

STRATUM 2 – EXISTING FILL

Existing fill was encountered underlying the surficial topsoil at seven of the boring locations. The existing fill consisted of sand and clay soils with intermixed topsoil deposits and was encountered extending to depths of 3 to 16 feet at the boring locations, corresponding to an elevation range from about 801.5 to 818 feet (where encountered).

The sand fill consisted of silty and clayey sands and was encountered in very loose to medium dense conditions, with SPT N_{60} -values ranging from 4 to 12 blows-per-foot (bpf) of penetration. The clay fill exhibited medium to hard consistencies, with shear strengths ranging from 0.8 to greater than 4.5 kips-per-square-foot (ksf) and had moisture contents ranging from 13 to 26 percent.

We performed four loss-on-ignition (LOI) tests on SPT samples obtained within the existing fill suspected of containing elevated levels of organic material. The LOI tests indicated organic contents of about 2.2 to 4.3 percent (refer to table below).

BORING NO.	SAMPLE INTERVAL (feet)	SOIL DESCRIPTION	ORGANIC CONTENT (%)	MOISTURE CONTENT (%)
B203	3.5 – 5.0	Fill- Lean Clay w/Sand- Brown & Dark Brown (CL)	2.5	22
B204	1.0 – 2.5	Fill- F/M Clayey Sand- Brown (SC)	2.2	19
DOOF	3.5 – 5.0	Fill- Sandy Lean Clay- Freq.	2.9	22
P205	6.0 – 7.5	Brown (CL)	4.3	20

TABLE 1: LOI RESULTS

STRATUM 3 – NATURAL SOILS

Natural soils were encountered underlying the surficial materials and existing fill and extended to the explored depths. The natural soils generally consisted of cohesive clay and clayey silt layers containing interbedded layers of granular sand and silt deposits.

The natural cohesive clays and clayey silts exhibited stiff to hard consistencies, with shear strengths ranging from 1.5 to greater than 4.5 kips-per-square foot (ksf) and had moisture contents ranging from 9 to 27 percent. We performed two Atterberg Limits determination tests on SPT samples obtained within the natural cohesive soils. Based on the results of these tests, the natural cohesive soils exhibited a plastic limit of 18 percent with liquid limits of 33 and 34 percent. Based on the in-situ moisture contents with respect the plastic and liquid limit ranges, the natural cohesive soils were generally encountered in a semi-solid condition.

The natural sands contained variable amounts of fines and were classified as "SP", "SP-SM", "SM", and "SM/SC" in accordance with USCS. The natural sands were encountered in very loose to very dense conditions, with SPT N_{60} -values ranging from about 4 to 71 bpf. The natural silts and sandy silts were encountered in a medium dense to extremely dense condition, SPT N_{60} -values ranging from about 12 to greater than 100 bpf.

GENERAL NOTES

Consider thickness measurements of surficial materials (e.g., topsoil, etc.) reported on the boring logs approximate since mixing of the surficial materials with the underlying subgrade can occur while advancing the augers, and it is difficult to measure the thickness of surface materials in small-diameter boreholes. Therefore, if more accurate surficial material thickness measurements are required, we recommend performing additional evaluations such as hand augers.

It is sometimes difficult to distinguish between fill and natural soils based on samples and cuttings from small-diameter boreholes, especially when portions of the fill do not contain man-made materials, debris, topsoil or organic layers, and when the fill appears similar in composition to the local natural soils. Therefore, consider the delineation of fill described above and on the appended boring logs approximate only. A more comprehensive evaluation of the extent and composition of the existing fill could be made by reviewing former site topography plans and by observing test pit excavations.

The soil profile described above and included on the boring logs are generalized descriptions of the conditions encountered. The stratification depths described above and shown on the logs are intended to indicate a zone of transition from one soil type to another. They are not intended to show exact depths of change from one soil type to another. The soil descriptions are based on visual classification of the soils encountered. Soil conditions may vary between or away from the borings. Please refer to the boring logs for the soil conditions at the specific locations.

3.2 GROUNDWATER CONDITIONS

Groundwater was encountered during drilling and groundwater measurement were obtained upon completion of drilling. A summary of groundwater measurements obtained for this project is provided in the following table.

BORING	GROUNDWA (fe	ATER DEPTH et)	GROUNDWATER ELEVATION (feet)					
NO.	DURING DRILLING	COMPLETION OF DRILLING	DURING DRILLING	COMPLETION OF DRILLING				
B201	N/E*	N/E*	N/E*	N/E*				
B202	4.0	5.0	798.0	797.0				
B203	N/E*	N/E*	N/E*	N/E*				
B204	3.0	16.0	810.0	797.0				
B205	N/E*	N/E*	N/E*	N/E*				
B206	4.0	18.0	813.0	799.0				
B207	N/E*	N/E*	N/E*	N/E*				
P201	N/E*	N/E*	N/E*	N/E*				
P202	5.5	6.0	802.5	802.0				
P203	4.5	7.0	803.5	801.0				
P204	1.5	13.0	810.5	799.0				
P205	16.0	16.0	811.0	811.0				
P206	N/E*	N/E*	N/E*	N/E*				
P207	N/E*	N/E*	N/E*	N/E*				

TABLE 2: GROUNDWATER MEASUREMENTS

BORING	GROUNDWA (fe	ATER DEPTH et)	GROUNDWATI (fe	ER ELEVATION et)
NO.	DURING DRILLING	COMPLETION OF DRILLING	DURING DRILLING	COMPLETION OF DRILLING
P208	3.0	5.0	809.0	807.0
P209	8.0	15.0	809.0	802.0
P210	N/E*	N/E*	N/E*	N/E*

*Groundwater Not Encountered

The encountered groundwater is considered perched above or within the relatively impermeable cohesive soils and is anticipated to be influenced by the water level in the adjacent Snidecar Drain, sloping site grades, and variable soil conditions (i.e., interbedded sand/clay soil stratum). In cohesive soils (i.e., clays and clayey silts), a long time may be required for the groundwater level in the borehole to reach an equilibrium position. The use of groundwater observation wells (piezometers) can be necessary to more accurately determine the hydrostatic groundwater level within soil profiles containing clays.

Expect hydrostatic groundwater levels/elevations to fluctuate throughout the year, based on variations in precipitation, evaporation, run-off, and other factors. The groundwater conditions indicated by the borings represent conditions at the time the readings were taken. The groundwater levels at the time of construction may vary from those conditions noted on the boring logs.

4. ANALYSIS AND RECOMMENDATIONS

4.1 SITE PREPARATION AND EARTHWORK

4.1.1 EXISTING FILL CONSIDERATIONS

Existing fill was encountered at seven of the boring locations extending to depths of 3 to 16 feet below current site grades, corresponding to an elevation range from about 801.5 to 818 feet (where encountered). The depths and elevations at the individual boring locations are provided in the following table.

BORING NO.	GROUND SURFACE ELEVATION (feet)	EXISTING FILL BOTTOM DEPTH (feet)	EXISTING FILL BOTTOM ELEVATION (feet)
B201	798	N/E*	N/E*
B202	802	N/E*	N/E*
B203	822	16.0	806
B204	813	6.0	807
B205	808	N/E*	N/E*
B206	817	5.0	812
B207	792	N/E*	N/E*
P201	800	N/E*	N/E*
P202	808	N/E*	N/E*

TABLE 3: EXISTING FILL

BORING NO.	GROUND SURFACE ELEVATION (feet)	EXISTING FILL BOTTOM DEPTH (feet)	EXISTING FILL BOTTOM ELEVATION (feet)
P203	808	6.5	801.5
P204	812	3.0	809
P205	827	9.0	818
P206	812	N/E*	N/E*
P207	803	N/E*	N/E*
P208	812	3.0	809
P209	817	N/E*	N/E*
P210	801	N/E*	N/E*

*Existing Fill Not Encountered

The existing fill generally consisted of sand and clay soils with intermixed topsoil deposits and had organic contents ranging from 2.2 to 4.3 percent (based on the results of 4 LOI tests). We consider the measured organics contents to be relatively low as most are below 4.0 percent. Based on the relatively consistent elevation range of the bottom of the existing fill, the presence of topsoil deposits within the existing fill, and the reported previous grading operations, it appears the elevated "hills" located within the current project area generally consist of stockpiled soils, likely from site stripping (i.e., topsoil removal) as well as from site balancing during original site development. Based on the range of SPT N_{60} -values within the existing fill (e.g. boring B203 where N_{60} -values vary from 7 to 25 bpf in a relatively close elevation range), it appears the fill was placed under variable compaction efforts and may not have been controlled in the field or placed as engineered fill.

The planned northern building has a finished floor elevation of 805 feet. Accordingly, we anticipate the existing fill will be removed from within the planned building footprint via grading cuts of up to about 20 to 25 feet in some areas. We also expect the fill at boring B206 will be removed from within the proposed southern building as B206 is at much higher grade (bottom of fill elevation 812 feet). Based on final pavement levels, the existing fill may be present under some pavement areas.

We consider the existing fill to be undocumented since we do not have information on the origin of the fill, including data on placement and compaction. Due to the variabilities associated with undocumented existing fill, we recommend the existing fill be removed (i.e., undercut) beneath proposed foundations and replaced with engineered fill as needed to re-establish the design foundation bearing elevation.

The existing fill can be considered for support of grade slabs and pavements, provided the subgrade is properly evaluated and prepared as described below and the Owner accepts the associated risks of poor performance. The increased risks associated with supporting grade slabs and pavements over the existing fill at this site could include greater than typical post-construction settlement, resulting in differential movements and associated cracking of the slabs. These risks can be reduced, but not eliminated, by evaluating the existing fill materials and preparing the subgrades as discussed in this report. In general, we anticipate the risks of poor slab performance to be relatively low if prepared as recommended. If the Owner is not willing to accept the risk of poor performance discussed below, the existing fill must be undercut beneath the entire footprint of the respective buildings and replaced with engineered fill.

Assuming the existing fill will remain in-place for support of floor slabs (depending upon final grading), further evaluation of the existing fill during construction must be conducted by SME. Further evaluation includes observing the condition of the existing fill in hand-auger borings or shallow test pits, testing the existing fill several feet below the subgrade surface using a cone penetrometer, observing the condition of the existing fill in the sides of the foundation excavations, and observing the response of the surface of the existing fill when subjected to a proofroll. Suspect existing fill materials observed during the evaluation and testing need be further evaluated by performing additional hand-auger borings and/or test pits and the contractor need to be prepared to assist SME, as needed. Existing fill to remain in-place must be of sufficient strength and free of deleterious materials such as excessive debris and organics. Unsuitable existing fill unable to be improved in-place shall be removed (i.e., undercut) and replaced with engineered fill placed and compacted per the requirements outlined in Section 4.1.5 of this report.

The recommendations provided in the following report sections are based on the assumption existing fill will be undercut beneath foundations, SME will be retained to provide construction materials services, the Owner accepts the risks of poor performance of the floor slab, and suitable existing fill will remain in-place and be used to support floor slabs. Please contact SME if our assumptions are incorrect so we can update our report as necessary.

Our evaluation of the existing fill is currently limited to the number of soil borings performed for this evaluation and sampling conducted within the borings (i.e., 2-inch diameter SPT samples obtained at intermittent depths). Based on the relatively large areas of the former stockpiles, it is possible the existing fill may contain greater amounts of buried topsoil or non-soil materials (e.g., construction materials, debris, etc.). Further evaluation of the existing fill may be warranted (e.g., test pit excavations). Please contact SME if addition evaluation of the existing fill is desired.

4.1.2 SITE SUBGRADE PREPARATION

If present, remove any existing buried structural elements (e.g., foundations, floor slabs, and other belowgrade structural components) associated with previous site usage from within the development area. Reroute any existing utilities from the planned building footprint and remove any abandoned utilities from the development area. Extend excavations for removal of buried structural elements and utilities to suitable existing fill or natural soils and backfill the resulting excavations with engineered fill meeting the requirements of Section 4.1.5 of this report.

Drainage tile systems are sometimes present in farm fields that exhibit poor subgrade drainage characteristics. Farm drain tile systems can contain significant amounts of collected water. If these tile systems are encountered in excavations, significant amounts of water can be discharged. If portions of these drain tiles are interrupted, significant back-ups of stormwater can occur that can have an adverse effect on site drainage and on the construction process. If present, it may be necessary to entirely remove the formerly installed drain tile in conjunction with establishing an overall site drainage program. We recommend the potential location and elevations of the existing drain tile systems (if present) be further evaluated, and measures to collect this water be incorporated into the permanent subsurface drainage measures for the site.

After stripping and removal of unsuitable materials and during cuts to design subgrade levels, groundwater seepage could be encountered. The borings indicate groundwater levels as shallow as 1.5 feet below existing grade and present within the upper 5 feet at seven of the borings. The earthwork contractor needs to be prepared to provide large sump pumps to remove excess surface water from recent precipitation and/or perched groundwater sources. Additionally, we recommend shaping the site grades to promote gravity sheet-drainage to limit disturbance from excess moisture/groundwater.

The subgrade soils are sensitive to disturbance when exposed to water. If the subgrade is exposed to water, it may be necessary to improve the disturbed subgrade or remove and replace the soils with engineered fill, crushed aggregate or crushed concrete. Placement of crushed aggregate or crushed concrete, possibly with a geotextile for separation, is a traditional treatment to protect subgrades.

In the case of more severe subgrade disturbance, particularly if the construction will occur during the winter and early spring months, chemical stabilization of the subgrade could be considered. SME can provide additional information about chemical stabilization using lime or cement, if desired.

Once design subgrade levels are established, the exposed subgrade needs to be uniformly compacted using large construction equipment, as the fill and natural soil conditions near the surface varied in condition/consistency. Take care during compaction not to damage nearby existing utilities. As predominantly silty and clayey soil conditions are expected, we recommend using large, sheepsfoot vibratory rollers for the compaction operations. We recommend at least several passes be made with the compaction equipment. In some areas, moisture conditioning and/or undercutting may be necessary to enhance the effectiveness of the compaction operation.

After compaction, we recommend the exposed subgrade be proofrolled in the presence of SME. Proofroll using a fully-loaded, tandem-axle dump truck or other similar pneumatic-tire construction equipment. Improve areas of unsuitable (e.g., loose) subgrade revealed during proofrolling by compacting in-place, if feasible. Soils unable to be suitably improved in-place must be removed (undercut) and replaced with engineered fill.

After the exposed subgrade is evaluated (as described above) and improved as necessary, engineered fill may be placed on the exposed subgrade to establish final design subgrade levels. Refer to Section 4.1.5 of this report for materials and compaction requirements for engineered fill.

4.1.3 SUBGRADE SETTLEMENT

Soil settlement will occur under applied loading from 1) the weight of the engineered fill placed to achieve design grade levels, 2) the building structure loads transferred to the soil beneath foundations, and 3) the weight of the floor slab and stored materials. We anticipate the total soil settlement will occur due to a combination of "short-term" elastic compression and "long-term" consolidation after application of loading.

Elastic compression occurs over a relatively short period of time and is related to the elastic properties of the soil. In granular soils (e.g., gravels, sands, sandy silts, etc.) the elastic modulus is directly related to the density of the material. Accordingly, denser granular soils will have a relatively higher elastic modulus and undergo less settlement from an applied load than will looser materials. In cohesive soils, the elastic component of the total settlement, sometimes referred to as immediate settlement, is generally much less than the consolidation settlement.

Consolidation settlement occurs over a relatively long period of time and refers to the volumetric change in saturated cohesive soils (e.g., clays, clayey silts, etc.) as moisture is forced out of a soil matrix under applied loading. Consolidation settlement occurs in two stages – primary and secondary – and is related to the in-situ moisture content and previous loading history of the soil. Primary consolidation refers to the phase in which pore water pressure, which initially carries the entire stress increase from the applied load, dissipates with time as the pore water drains from the soil and the pressure increase is slowly transferred to the soil matrix. Secondary consolidation occurs after the dissipation of the excess pore water pressure and is characterized by a much lower rate of settlement (compared to primary consolidation) continuing for the duration of the load application. In general, cohesive soils with higher moisture contents and lower pre-consolidation stress history have greater capacity for settlement, and vice-versa.

Based on the preliminary subgrade level information to establish the finish floor elevation of 805 feet for the northern building, we anticipate fills up of 12 feet within the northwest corner of the northern building (and adjacent pavements to the west). We are unclear on the finished level for the southern building, but similar 12-foot deep fill depths may be needed if the FFE for the test building is near 805 feet and the 20-foot wide test track elevation remains unchanged. Engineered fill will be placed on the exposed subgrade to establish final subgrade levels, and a retaining wall is anticipated based on the large site grade changes (refer to Section 4.3).

4.1.3.1 SETTLEMENT OF ENGINEERED FILL

When using cohesive soils as engineered fill (which is anticipated based on the existing fill within the mounds onsite and natural subgrade), some settlement of the engineered fill can occur even after it is placed and compacted to the specified criteria (e.g. minimum 95 percent of the soil's maximum dry density based on the modified proctor within 2 percent of optimum moisture content). For engineered fills less than about 12 feet thick, this settlement is relatively minor (typically about ½ inch or less) and occurs within 3 to 6 months. This time period is common with typical schedules for new construction, as final building finishes (e.g. floor slabs, pavements) are constructed several months after the site grades are raised to near final levels. The loads, and the resulting settlements, will transition gradually from cut areas, which will have no new settlement due to the fill, to areas with the maximum fill thickness where the largest settlements will occur.

As such, begin engineered fill placement at the deepest area within the building footprint as early as possible during rough grading to allow for a lag period (after placement of the engineered fill and before constructing the new building and pavement) during construction to reduce the potential for subgrade settlement to adversely affect the new construction.

4.1.3.2 SETTLEMENT OF UNDERLYING SUBGRADE

We understand the northwest corner of the planned northern building parking lot to the west will be located in a fill area. In addition to the settlement of the new engineered fill (Section 4.1.3.1 above), the underlying subgrade will experience settlement due to the weight of the engineered fill and the applied loads from the building foundations and floor slabs. We estimate the overburden load of the new engineered fill to be up to about 1,600 psf (for up to 12 feet of new fill at a moist unit weight of 135 pcf). The structural loads of the slab areas were unavailable, but anticipated to be no higher than 150 psf.

The magnitude of settlement is difficult to predict due to a number of variables and unknowns, such as the variations in soil conditions between the borings, varying type of fill planned to be reused to as engineered fill, and the final grades and structural loads for the project. Minor differences in subsurface conditions can have a significant impact on overall performance, both in the magnitude of actual settlement that occurs and in the time frame for the settlement to occur.

Assuming the full fill height of 12 feet with a slab load of 150 psf we estimate a total settlement of about 3/4 to 1-1/2 inches from the slab load and the new engineered fill (but not including settlement of the engineered fill – see Section 4.1.3.1 above). The time for this settlement to occur is estimated to be about 5 to 10 years.

Differential settlements could vary based on several scenarios, a few examples of which are summarized below.

- Variability of slab loading with time.
- Overburden loads from raising site grades (with new engineered fill) compared to areas where little fill is required.

We estimate differential settlements could range up to the estimate total settlement of about 3/4 to 1-1/2 inches over a span of 50 feet depending on the scenario. If these differential settlements cannot be tolerated, alternate slab support options must be considered.

4.1.4 SUBGRADE PREPARATION FOR FLOOR SLABS

Support the proposed floor slabs on a subgrade consisting of suitable improved sand or clay fill, or on engineered fill placed over suitable fill or natural sands and clays. Evaluate and prepare the subgrade as described in Sections 4.1.1 and 4.1.2, and place and compact engineered fill as discussed in Section 4.1.5.

Prior to concrete placement for floor slabs, SME needs to observe and test the subgrade in the pad areas of the proposed building to identify areas disturbed during construction activities and verify the final subgrade conditions are suitable for floor slab support. Recompact unsuitable subgrade identified by SME or remove and replace the unsuitable materials with engineered fill. Proofroll final subgrade areas accessible with large equipment in the presence of SME. For areas inaccessible to proofrolling equipment, use hand-operated equipment such as cone penetrometers, hand auger probes, and density gauges.

We recommend the top four inches of the slab subbase consist of an approved MDOT Class II granular material to provide a leveling surface for construction of the slab and a moisture capillary break between the slab and the underlying soils. MDOT 21AA dense-graded aggregate can be used as subbase material, instead of the Class II granular material, for improved stability and greater resistance to disturbance due to construction traffic. The thickness of aggregate needed to provide a stable construction platform will depend on the condition of subgrade soils during construction and the type and volume of construction equipment trafficking the prepared subgrade. The granular material, or dense-graded aggregate if used, must be compacted per Section 4.1.5.

Provide a vapor retarder below floor slabs to receive an impermeable floor finish/seal or a floor covering which would retard vapor transmission. The location of the vapor retarder (relative to the subbase) needs to be determined by the design Architect/Engineer based on the intended floor usage, planned finishes, and ACI recommendations. However, the placement of a vapor retarder affects construction of the floor slab, concrete curing, and the rate of moisture loss as the concrete dries. The flatwork contractor must use the appropriate equipment, materials, and placement/curing methods to prevent undesirable slab curling/warping.

Concrete mixes are regularly changing to optimize performance and economy. We recommend using only concrete contractor(s) with substantial experience in concrete mixing, placement and curing methods (e.g. to prevent undesirable slab curling, shrinkage, segregation, bleeding, etc.). The contractor may need to retain a concrete mix designer to develop the appropriate mix(es) for the project. We recommend using only specific type(s) of well-established concrete mixes 'tried and tested' to deliver successful long-term performance for each specific type of concrete application.

Separate floor slabs by isolation joints from structural walls and columns to permit relative movement. Place a minimum of 6 inches of engineered fill between the bottom of the slab and the top of the shallow foundation below.

Protect the slab-on-grade subgrade soils from frost action during winter construction. Frozen soils must be thawed and compacted or removed and replaced prior to slab-on-grade construction.

4.1.5 ENGINEERED FILL REQUIREMENTS

Fill placed within structural areas, including utility trench backfill, must be an approved material and free of frozen soil. If the proposed engineered fill soils contain more than 4 percent organics (or other deleterious materials), or debris larger than 6 inches in nominal diameter, do not use soils for engineered fill. Also, if debris material is significantly variable in nature, suspect in origin, or greater than about 5 percent of the soil (by weight), do not use soils for engineered fill.

Compact fill placed in structural areas to a minimum of 95 percent of the maximum dry density determined in accordance with the Modified Proctor test. Spread fill in level layers with a loose thickness appropriate for the type of equipment used to obtain compaction. Thinner lifts will be required in confined spaces and where compaction is achieved with hand-operated equipment. Sand fill can be compacted with a smooth-drum vibratory roller or vibratory plate compactors, including either walk-behind types or plate compactors mounted on a backhoe or excavator (i.e., hoe-pac). Clay fill can be compacted with sheepsfoot rollers at a moisture content between the optimum and two percent below the optimum.

Based on the information from the borings, the onsite natural sand and clay soils and portions of the existing fill (baring excess organics or debris) encountered at the boring locations are considered suitable for reuse as site engineered fill provided the material meets the requirements in the previous paragraph and is at a suitable moisture content for compaction. The on-site clays and sands in excess of 5 percent fines (silt or clay) will likely require moisture conditioning (i.e., aeration and drying) to achieve suitable moisture levels for proper compaction.

The site clays (with a USCS designation of "CL") and sands with silt contents in excess of 5 percent (with USCS designations of "SC", SM", and "SP-SM") will be difficult to compact in confined areas, such as in utility trenches and foundation excavations, where smaller, walk-behind type compaction equipment is used. Clayey and silty soils can be used as engineered fill in open areas where compaction is achieved with large equipment and where moisture conditioning is feasible. During wetter/colder periods of the year when moisture conditioning of the clayey and silty soils will likely not be feasible, we expect it will be necessary to import granular fill to the site and waste the clayey and silty soils on non-structural areas of the site. Do not use clayey and silty soils as engineered fill where drainage is required.

In utility trenches or foundation excavations, and in other areas where compaction is accomplished primarily by smaller plate compaction equipment, we recommend an approved granular material containing relatively low amounts of silt or clay, such as MDOT Class II granular material, be used as backfill. Thinner lift sizes may be required to achieve the required dry density in areas where smaller compaction equipment is used. We also recommend MDOT Class II granular material be used in areas requiring drainage or where the fill will serve as a capillary separation. The soils encountered in the borings, at locations and within depths where cuts are anticipated, are not expected to meet the gradational requirements of MDOT Class II granular material. Therefore, we anticipate soils conforming to MDOT Class II granular material will need to be imported to the site.

Coarse crushed aggregate used to backfill undercuts or to stabilize subgrades must consist of a wellgraded crushed natural aggregate or crushed concrete ranging from 1 to 3 inches in nominal size with no more than 7 percent by weight passing the No. 200 sieve. In cases where granular engineered fill will be placed over the crushed aggregate, top the surface of the coarse crushed material with a layer of at least 6 inches of dense-graded aggregate, such as MDOT 21AA, or covered with a suitable non-woven geotextile, to prevent migration of the granular materials into the coarser crushed aggregate.

4.2 SHALLOW FOUNDATIONS

The borings indicate the soil conditions at typical foundation bearing levels (after mass excavation to remove the existing fill) are suitable for support of conventional spread footing type foundations. This type of foundation system is considered suitable for the anticipated loading/structures. The use of intermediate or deep foundation systems are not considered necessary based on the anticipated light to moderate structural loads.

After site has been properly prepared, we anticipate typical spread foundations will bear on suitable natural cohesive soils with at least a stiff consistency, on suitable natural sands at least medium dense in relative density, or on engineered fill placed over suitable natural sands and clays. We recommend a maximum net allowable soil bearing pressure of 4,000 psf for the northern building, assuming an FFE of 805 feet (i.e., bottom of foundation levels 801 to 803 feet). Net allowable bearing pressures in the range of 3,000 to 4,000 pounds per square foot (psf) are feasible for design of shallow foundations for the southern building, assuming an FFE of 800 to 805 feet. We can recommend a final design bearing pressure once the FFE of the test building is determined.

Once each foundation area is exposed, SME must observe and test the foundation subgrades to verify suitable bearing conditions are present. Suitable natural soils were generally encountered beginning below the existing fill. Undercut unsuitable soils (i.e., existing fill) to expose underlying suitable natural sands and clays. In general clays are anticipated to be exposed for the foundations, however, improve in-place any overly loose natural sands. Undercut and remove soils that cannot be successfully improved in-place.

Foundations can be constructed at the level where suitable subgrade is encountered, or the design foundation bearing level can be reestablished using engineered fill or crushed aggregate used to backfill the undercut excavation. Where backfilling to the design bearing level is performed, extend the zone of undercutting and backfill laterally on a two vertical to one horizontal slope from the edge of the foundation as shown on the following Typical Foundation Undercutting Diagram.

Situate foundations a minimum of 42 inches below final site grade in unheated areas for protection against frost action during normal winters. Interior foundations in heated areas can be constructed at shallower levels (but may require excavation to extend through unsuitable fill soils). Protect the foundations and proposed bearing soils from freezing during construction if work occurs in the winter months.

Vertical excavation sidewalls must be maintained during foundation concrete placement and not be allowed to "mushroom out" at the top. The presence of natural clays at this site indicate it may be generally feasible to construct earth-formed of neat-cut foundations. However, the natural sands are subject to caving. If vertical earthen sidewalls cannot be maintained, it will be necessary to slope back the foundation excavations and form foundation sidewalls to maintain vertical faces for foundations and reduce the potentially adverse effects resulting from frost heave. Remove caved soils from the foundation bearing surfaces before placing concrete. Place foundation concrete as soon as practical after foundation excavations have been completed and the design bearing pressure verified to reduce the potential for disturbance of the foundation subgrade.

For bearing capacity and settlement considerations, design continuous (wall) foundations with a minimum width of 16 inches and isolated (column) foundations with a minimum dimension of 30 inches. In cases where structural loading is light, the minimum recommended foundation size, and not the design bearing pressure, may govern the size of the foundation.

We estimate total settlement for shallow spread or continuous foundations using the recommended maximum net allowable bearing pressure and bearing on suitable soils, as described above, to be 1 inch or less and differential settlements not exceed about one-half the total settlement for similarly loaded foundations. We base the settlement estimates on the available boring information, the estimated structural loads, our experience with similar structures and soil conditions and field verification of suitable bearing soils by SME.

4.3 RETAINING WALLS AND DRAINAGE

Retaining walls will likely be required to facilitate grade changes, such as at the northwestern corner and along the western parking lot of the planned northern building. We assume the walls will be no taller than 12 feet and will be supported on shallow foundations that are suitable for the recommended allowable bearing pressure presented in Section 4.2 of this report.

Retaining grade walls need to be backfilled with MDOT Class II granular material. Retaining wall backfill that will support floor slabs, pavements and other improvements will need to be compacted to a minimum of 95 percent of the maximum dry density determined by the Modified Proctor test. As a minimum, backfill not used for structural support of floor slabs, pavements or sidewalks must be compacted to the degree where it is stable under construction equipment. Exercise care during compaction of the wall backfill to avoid overstressing the walls and design the walls to accommodate the additional stresses associated with operating compaction equipment adjacent to the wall.

For a drained granular backfill and a level finish surface behind the wall, we recommend an active equivalent fluid pressure of 40 pounds per cubic foot (pcf) for design. This earth pressure is based on the wall being flexible enough to permit the active earth pressure condition to be reached. An outward movement away from the backfill equal to approximately 0.001 times the height of the wall is generally required to achieve the active earth pressure condition for granular backfill. If the wall is restrained or is rigid enough so that it does not rotate sufficiently to reach the active earth condition, we recommend using a higher lateral earth pressure (at-rest condition) for design. For rigid walls backfilled with a freedraining granular material and a level finish surface behind the wall, we recommend an equivalent fluid pressure of 55 pcf for design. Also, any additional lateral pressures due to surcharge loading, such as adjacent floor or column loads, traffic loads, sloping ground, or parking loads, must be added to the above lateral earth pressures for design.

In the long term, we recommend controlling groundwater to minimize water seepage and the buildup of hydrostatic pressures against the walls. We recommend drainage controls (i.e. edge drains) be installed around the perimeter of below-grade walls. For conventional drainage control, we recommend permanent edge drains be installed along the retained side of the retaining walls. We recommend the perimeter edge drains consist of a minimum 4-inch-diameter perforated plastic drainpipe, wrapped with a filter fabric and surrounded by 4 inches of a filter material, such as pea gravel (MDOT 34G). As indicated above, the walls must be backfilled with MDOT Class II granular material. If walls are designed without drainage controls, then we recommend using a higher lateral earth pressure of 95 pcf for sizing the walls.

The following parameters for evaluating the stability of the retaining walls assume the base of the wall bears directly on the natural clays and the walls area backfilled with a well-draining granular backfill. To evaluate the sliding of the wall, compute the sliding resistance at the base and the passive (resisting) and active (driving) earth forces. The sliding resistance may be determined by using a recommended ultimate sliding coefficient of 0.35 for the natural clays. Passive, active and at-rest earth pressure coefficients of 3.0, 0.33 and 0.50, respectively, may be used for design in combination with a unit weight of backfill of 120 pcf. This assumes a granular backfill will be in contact with the wall on the backside and on the front, at the toe of the wall. Typically, a safety factor of 1.5 to 2.0 is used for the lateral sliding resistance analysis, depending on the boundary conditions. Consider the movement required to achieve the full passive pressure when using passive pressure for resistance.

In addition to checking sliding stability of the retaining walls, evaluate the safety factor from overturning, location of the resultant force at the base, mass stability, and contact pressure at the base.

4.4 SEISMIC SITE CLASS

Based on the subsurface information obtained from the borings to a maximum depth of 35 feet, and on our previous experience in the project area where deeper borings have been performed, seismic site Class D applies to this site in accordance with the 2015 MBC referencing Table 20.3-1 in ASCE Standard ASCE/SEI 7-16.

4.5 CONSTRUCTION CONSIDERATIONS

The contractor must take precautions to protect nearby existing pavements and utilities during construction. Exercise care during the excavating and compacting operations so excessive vibrations do not cause settlement of nearby existing pavements and utilities, and to avoid undermining existing utilities when performing excavations for the proposed construction.

The borings indicate groundwater levels as shallow as 1.5 feet below existing grade and present within the upper 5 feet at seven of the borings. Groundwater seepage could be encountered during foundation construction and utility installation. The depth and rate of potential seepage will depend on the groundwater levels and potential perched conditions within sands in the clay soils. Control water accumulations in excavations above the groundwater level using standard sump pit and pumping procedures. Utilize a working surface of either crushed aggregate or crushed concrete to protect the exposed subgrade where seepage is encountered.

The sand and clay soils at this site will be sensitive to disturbance when trafficked, especially when these soils become wet. If the subgrade is disturbed, it will be necessary to disc, aerate, and recompact the disturbed existing sand and clay fill, or to remove and replace the disturbed soils with engineered fill, crushed aggregate, or crushed concrete. To protect areas of prepared subgrade from disturbance and to create dependable haul routes and material laydown areas, placement of crushed aggregate or crushed concrete, possibly with a geotextile for separation, could be required.

Remove ponded surface water and prevent run-off from reaching foundation excavations and areas of prepared subgrade. Establish positive surface drainage at the onset of construction to mitigate the potential for subgrade disturbance.

Based on the borings (predominately clay profile, with limited deeper sand soil stratum with groundwater) we consider the site unfavorable for stormwater infiltration. We recommend the project civil engineer consider the poor subsurface drainage conditions in evaluating stormwater detention/discharge for the site.

The contractor must provide safely sloped excavations or adequately constructed and braced shoring systems in accordance with federal, state and local safety regulations for individuals working in an excavation exposing them to the danger of moving ground. If material is stored or heavy equipment is operated near an excavation, use appropriate shoring to resist the extra pressure due to the superimposed loads.

Handling, transportation and disposal of excavated materials and groundwater need to be performed in accordance with applicable environmental regulatory requirements.

5. SIGNATURES

Prepared by:

Reviewed by:

Jeremy S. Wahlstrom, PE Project Engineer Christopher G. Naida, PE Senior Consultant

APPENDIX A

BORING LOCATION DIAGRAM (FIGURE NO. 1) BORING LOG TERMINOLOGY BORING LOGS (B201–B207 AND P201-P210) UNCONFINED COMPRESSIVE STRENGTH TEST RESULTS (2 SHEETS) CONSOLIDATION TEST RESULTS (2 SHEETS) ATTERBERG LIMITS TEST RESULTS (2 SHEETS)

O REPRODUCTION SHALL BE MADE WITHOUT THE PRIOF CONSENT OF SME 2017

UNIFIED SOIL CL	ASSIFIC	ATION	AND SYMBOL CHART
CC (more than 50% of r	DARSE-0	GRAINE s larger	D SOIL than No. 200 sieve size.)
	Cle	an Grav	el (Less than 5% fines)
		GW	Well-graded gravel; gravel-sand mixtures, little or no fines
GRAVEL More than 50% of coarse fraction larger than		GP	Poorly-graded gravel; gravel-sand mixtures, little or no fines
No. 4 sieve size	Grave	el with fir	nes (More than 12% fines)
	0.000	GM	Silty gravel; gravel-sand- silt mixtures
		GC	Clayey gravel; gravel- sand-clay mixtures
	Cl	ean San	d (Less than 5% fines)
		SW	Well-graded sand; sand- gravel mixtures, little or no fines
SAND 50% or more of coarse fraction smaller than		SP	Poorly graded sand; sand-gravel mixtures, little or no fines
No. 4 sieve size	Sand	l with fine	es (More than 12% fines)
		SM	Silty sand; sand-silt- gravel mixtures
		SC	Clayey sand; sand–clay- gravel mixtures
l (50% or more of ma	FINE-GF aterial is	RAINED smaller	SOIL than No. 200 sieve size)
SILT		ML	Inorganic silt; sandy silt or gravelly silt with slight plasticity
AND CLAY Liquid limit less than 50%		CL	Inorganic clay of low plasticity; lean clay, sandy clay, gravelly clay
		OL	Organic silt and organic clay of low plasticity
		МН	Inorganic silt of high plasticity, elastic silt
CLAY Liquid limit 50%		СН	Inorganic clay of high plasticity, fat clay
or greater		он	Organic silt and organic clay of high plasticity
HIGHLY ORGANIC SOIL		PT	Peat and other highly organic soil

BORING LOG TERMINOLOGY

	LABORATORY CLA	ASSIFIC	ATION CRITER	RIA	
GW	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	n 4; C _c =	$= \frac{D_{30}^{2}}{D_{10} \times D_{60}} \text{ betw}$	veen 1 and 3	When labora tion of soils classification
GP	Not meeting all gradati	on requi	irements for GW	/	grained soil:
GM	Atterberg limits below " line or PI less than 4	'A"	Above "A" line between 4 and	with PI 7 are	 SC/CL (0 SM/ML (3 GC/CL (0
GC	Atterberg limits above line with PI greater that	"A" n 7	borderline case use of dual syn	es requiring nbols	For soils whe
SW	$C_{U} = \frac{D_{60}}{D_{10}}$ greater than	n 6; C _C =	$\frac{D_{30}^{2}}{D_{10} \times D_{60}} \text{ betw}$	veen 1 and 3	 SP/GP or SC/GC (0
SP	Not meeting all gradati	on requi	irements for SW	1	 Sand) SM/GM (
SM	Atterberg limits below " line or PI less than 4	'A"	Above "A" line between 4 and	with PI 7 are	 SW/SP (3 GP/GW (3 SC/SM (3
SC	Atterberg limits above line with PI greater that	"A" n 7	borderline case use of dual syn	es requiring nbols	 GM/GC (CL/ML (S ML/CL (C CH/MH (
Deter Deper	mine percentages of sar	nd and g ines (fra	ravel from grain	n-size curve. an No. 200	 CL/CH (L MH/ML (I
Less	han 5 percent		GW, GF	P, SW, SP	DF
More 5 to 1	than 12 percent 2 percent	Cas	GM, G0 ses requiring du	C, SM, SC al symbols	2ST 3ST
• SP- el)	SM or SW-SM (SAND w	ith Silt o	or SAND with Sil	t and Grav-	AS GS
• SP- Gra	SC or SW-SC (SAND wi /el)	th Clay	or SAND with C	lay and	LS NR
• GP- San	GM or GW-GM (GRAVE d) CC or CW CC (CRAVE	L with S		with Silt and	PM RC
and	Sond) Sand)		ay of GRAVEL	with Clay	SB
• SC-	SM (SILTY CLAYEY SA	ND or S	ILTY CLAYEY	SAND with	VS
• SM- Grav	SC (CLAYEY SILTY SA	ND or C	LAYEY SILTY	SAND with	ws
GC- with	GM (SILTY CLAYEY GF Sand)	RAVEL	or SILTY CLAYE	EY GRAVEL	
	PART	ICLE SI	ZES		WOH WOR
Bo Co	ulders - obles -	Greate 3 inche	r than 12 inches s to 12 inches	6	SP PID FID
Gra	avel- Coarse - Fine -	3/4 incl No. 4 to	nes to 3 inches o 3/4 inches		
Sa	nd- Coarse - Medium -	No. 10 No. 40	to No. 4 to No. 10		Parting
Silt	Fine - and Clay -	No. 200 Less tha	0 to No. 40 an (0.074 mm)		Seam Layer Stratum
	PLASTI		HART		Pocket Lens Hardpan/
⁶⁰					
%) 50 (СН		Lacustrine Mottled
а) Хії ⁴⁰				INE	Varved
ÖN 30			PI=0.7	3 (LL-20)	Occession
∠ 10 20	CL	$ \downarrow $	MH & OH		Frequent
ASTI					Interbedd
	ML &	OL			
0L 0	10 20 30 40	50	60 70 80) 90 100	
		IMIT (LI	L) (%)		The visual-man quantities of no
					Trace – pa Few – 5
					Little – 15 Some – 30
					Mostly - 50
Cohe	cioniose Solio				Cohesive Sol
cones	5011 <u>5</u>		NI /1	N-Value)	00.100170.00
<u>Relati</u>	ve Density		(Blows	s per foot)	Consistency
Very L Loose	oose		0 5	to 4 to 10	Very Soft Soft
Mediu Dense	m Dense		11 31	to 30 to 50	Medium Stiff
Very E Extrer	Dense nely Dense		51 O\	to 80 /er 81	Very Stiff Hard
	. ,		0.		

When laboratory tests are not performed to confirm the classification of soils exhibiting borderline classifications, the two possible classifications would be separated with a slash, as follows: For soils where it is difficult to distinguish if it is a coarse or finegrained soil: SC/CL (CLAYEY SAND to Sandy LEAN CLAY) SM/ML (SILTY SAND to SANDY SILT) GC/CL (CLAYEY GRAVEL to Gravely LEAN CLAY) GM/ML (SILTY GRAVEL to Gravelly SILT) For soils where it is difficult to distinguish if it is sand or gravel, poorly or well-graded sand or gravel; silt or clay; or plastic or nonplastic silt or clay: SP/GP or SW/GW (SAND with Gravel to GRAVEL with Sand) SC/GC (CLAYEY SAND with Gravel to CLAYEY GRAVEL with Sand) SM/GM (SILTY SAND with Gravel to SILTY GRAVEL with SM/GM (SILTY SAND with Gravel to SILT Sand) SW/SP (SAND or SAND with Gravel) GP/GW (GRAVEL or GRAVEL with Sand) SC/SM (CLAYEY to SILTY SAND) GM/GC (SILTY to CLAYEY GRAVEL) CL/ML (SILTY CLAY) ML/CL (CLAYEY SILT) CH/MH (FAT CLAY to ELASTIC SILT) CL/CH (LEAN to FAT CLAY) • MH/ML (ELASTIC SILT to SILT) DRILLING AND SAMPLING ABBREVIATIONS Shelby Tube – 2" O.D. Shelby Tube – 3" O.D. 2ST 3ST AS GS Auger Sample Grab Sample _ _ LS NR _ Liner Sample No Recovery PM _ Pressuremeter RC _ Rock Core diamond bit. NX size, except where noted SB Split Barrel Sample 1-3/8" I.D., 2" O.D., _ except where noted VS Vane Shear ws _ Wash Sample OTHER ABBREVIATIONS WOH Weight of Hammer WOR _ Weight of Rods Soil Probe SP PID _ Photo Ionization Device FID Flame Ionization Device DEPOSITIONAL FEATURES as much as 1/16 inch thick Parting 1/16 inch to 1/2 inch thick 1/2 inch to 12 inches thick Seam _ Layer greater than 12 inches thick Stratum Pocket deposit of limited lateral extent Lens _ lenticular deposit an unstratified, consolidated or cemented Hardpan/Till mixture of clay, silt, sand and/or gravel, the size/shape of the constituents vary widely Lacustrine _ soil deposited by lake water soil irregularly marked with spots of different Mottled _ colors that vary in number and size Varved - alternating partings or seams of silt and/or clav Occasional one or less per foot of thickness more than one per foot of thickness strata of soil or beds of rock lying between or Frequent Interbedded alternating with other strata of a different nature DESCRIPTION OF RELATIVE QUANTITIES The visual-manual procedure uses the following terms to describe the relative quantities of notable foreign materials, gravel, sand or fines: Trace – particles are present but estimated to be less than 5% Few – 5 to 10% Little – 15 to 25% Some – 30 to 45% Mostly – 50 to 100% OGY AND CORRELATIONS **Cohesive Soils** Undrained Shear Strength (kips/ft²)

VISUAL MANUAL PROCEDURE

istency	N₀₀ (N-Value) (Blows per foot)	Undrained Shea Strength (kips/ft
Soft	<2	0.25 or less
	2 - 4	> 0.25 to 0.50
ım	5 - 8	> 0.50 to 1.0
	9 - 15	> 1.0 to 2.0
Stiff	16 - 30	> 2.0 to 4.0
	> 30	> 4.0 or greater

Standard Penetration 'N-Value' = Blows per foot of a 140-pound hammer falling 30 inches on a 2-inch O.D. split barrel sampler, except where noted. N60 values as reported on boring logs represent raw N-values corrected for hammer efficiency only.

IDN: Superior Township, Michigan Dr: Hollow-stem Augers IT CHECKED BY: JSW Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan Image: Superior Township, Michigan <th>ROJECT</th> <th></th> <th>E: H/</th> <th>ATCI R&D Cer</th> <th>nter Crash E</th> <th>uilding</th> <th>& Test</th> <th>Track</th> <th></th> <th>PR</th> <th>OJECT N</th> <th>UMBER:</th> <th>087829.0</th> <th>00</th> <th></th> <th>E</th> <th>BORIN</th> <th>IG DEPTH: 15 FEE</th>	ROJECT		E: H/	ATCI R&D Cer	nter Crash E	uilding	& Test	Track		PR	OJECT N	UMBER:	087829.0	00		E	BORIN	IG DEPTH: 15 FEE
Bit Hollow-stem Augers T CHECKED BY: JSW Image: Display Density (perf) - 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	LIENT:	IBI Gr	roup							PR	OJECT L	ΟΟΑΤΙΟ	N: Superi	or Towr	nship, N	lichiga	in	
T CHECKED BY: JSW 	ATE ST/	ARTE) : 10	/7/21	COMPL	ETED:	10/7/	21		BO	RING ME	THOD:	Hollow-ste	m Auge	ers			
DRY DENSITY (pcf) 90 100 110 120 MOISTURE & ALTIERBERG LINITS (%) PL MC LL 10 20 30 40 T HAND PENE. I TORVANE SHEAR (PK) X VANE SHEAR (PK) STRENGTH (KS +) REMARKS 10 20 30 40 2 3 4	RILLER:	MC	(D&T	Drilling)	RIG NO	: D&T	(ATV	B57)		LO	GGED B	/ : KJT			CHE) BY:	JSW
MOISTURE & LIMITS (%) PL MC LL 10 20 30 40 I VANE SHEAR (PK) X VANE SHEAR (REM) SHEAR STREMAR (KSF) 11 2 3 30 40 SHEAR STREMAR (KSF) 12 3 40 14 45 13 45 45 14 1 45 15 45 45 16 1 45 17 10 20 30 40 14 45 18 10 10 10 10 10 10 10 10 10 10 10 10 10								ÖN	HES)	H	HAMMER		DRY DEN (pcf) 90 100 11	SITY 0 120	 ✓ HANE M TORV ● UNC.) PENE. 'ANE SHE/ COMP.	AR	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DEPTH (FEI	SYMBOLIC PROFILE	ELEVA	TION: 798± FT				SAMPLE TYPE/ NTERVAL	RECOVERY LENGTH (INCH	SPT BLOWS P	DATE: 9/1	6/2021		8E & ERG %) □L ━ T	● VANE × VANE ◆ TRIA S STREM	SHEAR (F SHEAR (F (IAL (UU) HEAR IGTH (K	PK) REM) SF)	REMARKS
	0		0.5	6 inches of TC	PSOIL		797.5			0,0,	<u>10 20</u>	<u>30 40</u>	10 20 3) 40 :	1 2	2 3	4 :	1.2.00 0 0 00
			3.0	LEAN CLAY- E (CL)	Brown- Very S	tiff	795.0	SB1	18	1 1 4	7		19		•	▼		
	5							SB2	18	4 6 11	\ \23 Q		15				4.5+	
				Sandy LEAN (CLAY-Brown	and		SB3	18	8 13 20		44	14	•••••••••••••••••••••••••••••••••••••••			4.5+ ▼	
	10			Gray to Brown	- Hard (CL)			SB4	18	4 8 12	2	7/ 7/ }	15	••••••			4.5+	
	10		12.0				786.0	_						•••••••	•		· · · · · · · · · · · · · · · · · · ·	
	35		15.0	LEAN CLAY- (Layers- Brown	Occasional Sa - Very Stiff (C	nd L)	700.0	SB5	18	14 13		1 41	26	•••••••••••••••••••••••••••••••••••••••			· · · · ·	
	15	-	15.0	END OF BOR	ING AT 15.0 F	EET.									•		· · · · · · · · · · · · · · · · · · ·	
	80																· · · · · · · · · · · · · · · · · · ·	
	20											· · · · · · · · · · · · · · · · · · ·					· · · ·	
	75	-															· · · · · · · · · · · · · · · · · · ·	
	25	- 										· · · · · · · · · · · · · · · · · · ·						
	'0	-													•			
		-										· · · · · · · · · · · · · · · · · · ·						
roximate. The in-situ transitions between materials may be gradi	GROU	NDWAT	ER & BA	CKFILL INFORMA	TION	NOTES	: 1. The	e indica	ted st	ratificat	tion lines a	re approx	imate. The	in-situ tr	ansition	s betwo	een m	aterials may be grad
ine are solely for visualization purposes and do not necessarily	ROUND	WATE	R WAS	NOT ENCOUN	NTERED		∠. ine rep	e colors present t	the in-	situ co	lors encou	ntered.	are solely fo	n visual	i∠alion p	ourpose	s and	uo noi necessariiy

Г

DATE START					PR	OJECT NUMBER:	087829.00	nshin Michigan	
DRILLER: N	IED: 10/5/21	COMPLETED: 10/	5/21		во	RING METHOD:	Hollow-stem Aug	ers	
(L	MC (D&T Drilling)	RIG NO.: D&T (AT)	/ B57)		LO	GGED BY: KJT		CHECKED BY:	JSW
ELEVATION (FEE DEPTH (FEET) SYMBOLIC	ELEVATION: 802± FT PROFILE DESC	RIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₅₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) > VANE SHEAR (REM) ◆ TRIAXUA (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
-	0.5 6 inches of TOPSO	IL 801	5						
800 -	LEAN CLAY with S Occasional Roots- I Stiff (CL)	and- 3rown- Very	SB1	18	4 8	16 	19		
⊻	4.0 Sandy SILT- Occas Silt Layers- Brown a 6.0 Medium Dense (ML	ional Clayey and Gray- Wet- .) 796.	0 SB2	18	3 4 5				
795	LEAN CLAY- Brown	n- Stiff (CL) 794.	SB3 0	16	4 5 7	16 O	12	▼	
- 10 - -	LEAN CLAY with S	and- Gray- Very	3ST4	14			16 422 ◆ ■	•••	
790 -	Stiff (CL)		SB5	18	2	16 O	14		
15	END OF BORING	AT 15.0 FEET.	0]		0				
785 - - -									
20 – - 780 –									
775 -									
GROUNDW		NOTES: 1.T 2.T	ne indica ne colors	ted str depic	atification	tion lines are approxi the symbolic profile	mate. The in-situ are solely for visua	transitions between ma lization purposes and	aterials may be gradu do not necessarily
∑ DURING BC ▼ AT END OF	DEPTH (FT) ELEV ORING: 4.0 79 F BORING: 5.0 79	(FT) FE 8.0 7.0	present	the in-	situ co	lors encountered.	, –		,

PROJI CLIEN	ect nam It: IBI (IE: HATCI R&D Cent Group	er Crash Building	& Test Trac	k	PR PR	OJECT NUMBER: OJECT LOCATIO	087829.00 N: Superior Tov	vnship, Michigan	
DATE	STARTE	ED: 10/5/21	COMPLETED:	10/5/21		вс	RING METHOD:	Hollow-stem Au	gers	
DRILL	ER: MC	C (D&T Drilling)	RIG NO.: D&T	(ATV B57)		LC	GGED BY: KJT		CHECKED BY	: JSW
	DEPTH (FEET) SYMBOLIC	ELEVATION: 822± FT		AMPLE TYPE/NO.	RECOVERY ENGTH (INCHES)	6PT BLOWS PER 6IX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₈₀ O	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIAXUL (UU) SHEAR STRENGTH (KSF) 	REMARKS
		۲ PROFILE I	PSOIL	<u>821</u> .7-		0,0,	10 20 30 40 : : : : :	10 20 30 40		
320				SB1	18	4 8 11 2 2 3	25 ••• 7	16	₹	- Loss-On-Ignition (LOI
15		FILL- LEAN CL. Brown and Dark Stiff (CL)	AY with Sand- (Brown- Hard to	SB3	18	1 2 3		20	▼	test performed on Sample SB2 indicates an organic content of 2.5 percent.
10	10-			SB4 SB5	18	5 7 7 2 4	19 	16	•	
	15 -	13.0 FILL- Sandy LE Occasional Top and Dark Browr 16.0	AN CLAY- soil Seams- Brown n- Stiff (CL)	809.0 SB6 806.0	18	4 5 5 2		13	•	
05		LEAN CLAY wit Hard (CL)	h Sand- Brown-	804.0 SB8	18	5 7 3 9	16 Q 128	17:	4.5+ ▼ 4.5+	
00	20 -	CLAYEY SILT- (ML/CL)	Brown- Hard	800.0		12		•	▼	
205		LEAN CLAY wit Hard (CL)	h Sand- Brown-	SB9 795.0	18	3 8 14	29	15	4.5+	
30	-30	LEAN CLAY wit Hard (CL)	h Sand- Gray-	SB10	18	7 11 15	1 35 9	14	45-	
G	ROUNDWA	TER & BACKFILL INFORMAT		1. The indic	ated st	ratifica	tion lines are approvi	mate. The in-situ	transitions between	naterials may be gradua
GRO	JNDWAT	ER WAS NOT ENCOUN	TERED	2. The colo represen	rs depic t the in-	cted on situ co	the symbolic profile lors encountered.	are solely for visua	alization purposes an	d do not necessarily
BACK	FILL METH	HOD: Auger Cuttings		,						

٦

Γ

BORING B203

PAGE 2 OF 2 BORING DEPTH: 35 FEET

PROJECT NAME: HATCI R&D Center | Crash Building & Test Track

PROJECT NUMBER: 087829.00

CLIENT	F: I	Bl Gr	oup
EVATION (FEET)	ЕРТН (FEET)	'MBOLIC ROFILE	FI EVAT

		PR	OJECT LOCATIO	N: Superior Tow	nship, Michigan
SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) - ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 10 20 30 40	▼ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ● TRIAXIA (UU) SHEAR STRENGTH (KSF) 1 2 3 4

ELEVATION (FEE	З ДЕРТН (FEET)	인 비 임 비 인 비 인 비 민 문 ELEVATION: 822± FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ O 10 20 30 40	(pct) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	Image: Torvane Shear ● UNC. COMP. ● VANE SHEAR (PK) > VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3	REMARKS
- 790 -	-	LEAN CLAY with Sand- Gray- Hard (CL) <i>(continued)</i>	SB11	18	4	/ / / / / / / / / /	15	4.5*	
-	—35— -	35.0 787.0 END OF BORING AT 35.0 FEET.			11				
- 785 - -	-								
- 780	40								
-	- 45 —								
- - 775 -	-								
-	- 50 — -								
- 770 - -	-								
- - - 765	55 - - -								
-	- - 60 —								
- 760	-								
	- 65 —								
- 755	-								
	70								

		51	ME									BC	PAGE 1 OF 1
PRO	JECT	NAME	: HATCI R&D Center	Crash Building	& Test	Track		PR	OJECT NUMBER:	: 087829.0	0	BORI	NG DEPTH: 25 FEET
CLIE	NT:	IBI Gro	pup					PR	OJECT LOCATIO	N: Superio	or Town	nship, Michigan	
DATI	E STA	RTED	: 10/5/21	COMPLETED:	10/5/2	21		BC	RING METHOD:	Hollow-ster	n Auge	ers	
DRIL	LER:	MC (I	D&T Drilling)	RIG NO.: D&T	(ATV	B57)		LO	GGED BY: KJT			CHECKED BY	: JSW
ELEVATION (FEET)	OEPTH (FEET)	SYMBOLIC PROFILE	ELEVATION: 813± FT PROFILE DE 3.3 4 inches of TOPS	SCRIPTION	812.7-	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ O	DRY DENS (pcf) I 90 100 110 MOISTUR ATTERBE LIMITS (' PL MC 10 20 30	SITY ■ 120 E & RG %) LL = 40 ;	 ♥ HAND PENE. ♥ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ♥ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
-			FILL- Fine to Mec SAND- Brown- M 3.0	ium CLAYEY bist- Loose (SC)	810.0	SB1	18	2 3 3	8 Q	19			Loss-On-Ignition (LOI) test performed on
- 810 -	5-		FILL- Fine to Mec 4.0 SAND- Brown- W FILL- LEAN CLA	ium SILTY et- Loose (SM) ⁄- Brown- Stiff	809.0	SB2	18	4 4 5	1 12 0	24		▼	Sample SB1 indicates an organic content of 2.2 percent.
-	•		LEAN CLAY with Hard (CL)	Sand- Brown-	807.0	SB3	18	2 7 10	23 23	19	· · · ·	4.5+ ▼	
- 805	10 -					SB4	18	3 4 6	/ 13' O	20	· · · ·		
- 800			LEAN CLAY with Stiff (CL)	Sand- Gray- Very		3ST5		2	4	19	118	•	
-	15 - 7		17.0		796.0	SB6	18	4 8					
- 795 - - -	20 -	-	SILT- Occasional Layers- Gray- We to Dense (ML)	Clayey Silt t- Medium Dense		SB7	16	6 8 12			· · · · ·		
- 790 -		-	25.0		788.0	SB8	18	12 14 22					
-		-	END OF BORING	6 AT 25.0 FEET.									
- - 785 -		-											
	-30-	I									,		l
∑ DI ▼ A1	groun Uring F End	BORIN OF BOI	R & BACKFILL INFORMATIO DEPTH (FT) EL G: 3.0 RING: 16.0	NOTES: EV (FT) 310.0 797.0	: 1. The 2. The repi	e indica e colors resent f	ted str depic the in-	atifica ted on situ co	tion lines are approx the symbolic profile lors encountered.	kimate. The internation of the second s	n-situ tr r visuali	ansitions between r zation purposes and	naterials may be gradual. d do not necessarily
BACK	(FILL N	ЛЕТНО	D: Auger Cuttings										

.....

	SM	F								BORIN	G B205
										BORING DEP	TH: 25 FEET
	I NAME: 1	HATCI R&D Center Cra	sh Building & Tes	I I rack		PR	OJECT NUMBER:	087829.00 N: Superior Tow	unshin Michia	an	
DATE ST	ARTED: 1	0/6/21 CO	IPLETED: 10/6	/21		BC	RING METHOD:	Hollow-stem Auc	iers		
DRILLER	R: MC (D& [−]	r Drilling) RIG	NO.: D&T (ATV	B57)		LO	GGED BY: KJT		CHECKE	DBY: JSW	
ELEVATION (FEET)	OLEP IN (FEEL) SYMBOLIC PROFILE	/ATION: 808± FT PROFILE DESCRIPT	ON	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ♥ TORVANE SH ● UNC. COMP. ● VANE SHEAR ♥ TRAXAL (UU) SHEAR § TREAK STRENGTH ((1 2 3) 	EAR (PK) (REM) (KSF)	REMARKS
	0.8	10 inches of TOPSOIL	807.2								
· 805	3.0	Sandy LEAN CLAY- Bro (CL)	wn- Stiff 805.0	SB1	18	2 3 4	9 	18	▼		
Ę	5-	LEAN CLAY with Sand- Hard (CL)	Brown-	SB2	16	4 8 10	24 0 1	17:		4.5+	
-800	8.0	CLAYEY SILT with Sand Hard (ML/CL)	I- Brown- 800.0	SB3	18	4 6 7		12		4.5+ ▼	
- 795	0 -	LEAN CLAY with Sand- Hard (CL)	Gray-	SB4	18	5 7 10		15		4.5+	
15	5 - <u>14.0</u>	CLAYEY SILT with Sand Hard (ML/CL)	794.0	SB5	18	5 9 12	28	14		4.5+ ▼	
790 20	0 -		790.C	SB6	18	5 10 12	29	14		4.5+ ▼	
785	- - - - - - - - - - - - - - - - - - -	Hard (CL)	783.0	SB7	18	4 10 16	 	15		4.5+ ▼	
2		END OF BORING AT 2	5.0 FEET.								
· 780	-										
	-										
GROUNE BACKFILL	UNDWATER & E DWATER W/	AS NOT ENCOUNTERED	NOTES: 1. Th 2. Th rep	e indica e colors present t	ted str depic the in-	ratifica ted on situ co	tion lines are approxi the symbolic profile lors encountered.	mate. The in-situ are solely for visua	transitions betw	ween materials is and do not n	nay be gradual ecessarily

1:31:39 PM

		EM	F								BC	DRING B206
											BORIN	PAGE 1 OF 2 G DEPTH: 34.4 FEET
		NAME:	HATCI R&D Center	Crash Building	& Test	Track		PR	OJECT NUMBER:	087829.00	nshin Michigan	
╞	DATE STA	RTED:	10/6/21	COMPLETED:	10/6/2	21		BC	RING METHOD:	Hollow-stem Aud	ers	
	DRILLER:	MC (D&	T Drilling)	RIG NO.: D&T	(ATV	B57)		LC	GGED BY: KJT		CHECKED BY:	JSW
	ELEVATION (FEET) DEPTH (FEET)	SYMBOLIC PROFILE	Vation: 817± FT Profile des	CRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₈₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ♥ TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
-	- 815 -	- 2.0 3.5	TOPSOIL FILL- Fine to Medi SAND- Brown- Mo	um CLAYEY ist- Very Loose	815.0 813.5	SB1	18	1 1 2	4 	17:		
-	⊈ . 5-	5.0	FILL- LEAN CLAY Brown & Gray- Ha	with Sand- rd (CL)	812.0	SB2	18	2 2 2	5	20	▼	
	- 810 -	-		m and Cray		SB3	18	5 9 13	29 7	18	4.5+ ▼	
-	10 -		Hard (CL)	in and Gray-		SB4	18	3 5 10	20'	19	4.5+	
-	- 805 -	-	CLAYEY SILT- Gr	ay (ML/CL)	805.0			45		15		
	15 -	15.0	Fine to Medium S/ Gray- Wet- Very D	AND with Silt- ense (SP-SM)	803.0	SB5	18	15 22 31	71 C			Sample SB5 moisture content test performed on clayey silt. The sample was too
	- 800 - • 20 -	-				SB6	18	2 5 10	20	13	4.5+	disturbed to perform a shear strength test.
-	- 795 -	-	LEAN CLAY with S Hard (CL)	Sand- Gray-		CB7	18	9	\ \ \ \ \ \ \ \ \ \ 36	12	4.5+	
_	- 790	-						16		•		
-				1		SB8	18	4 10 14	32	14	4.5+	
	GROUN	Boring: Of Borin	DEPTH(FT) ELE 4.0 8 G: 18.0 7	NOTES (FT) (13.0 (99.0	: 1. The 2. The rep	e indicat e colors resent t	ted str depic he in-	atifica ted on situ co	ion lines are approxi the symbolic profile lors encountered.	mate. The in-situ l are solely for visua	ransitions between n lization purposes and	naterials may be gradual. I do not necessarily

65 -

- 750

BORING B206

	5	5N	ME						BU	PAGE 2 OF
PROJE				Track		PR	OJECT NUMBER	8: 087829.00	BORING	DEPTH: 34.4 FEE
LIENT	F: 18	3I Gro	pup			PR	OJECT LOCATIO	DN: Superior Tow	nship, Michigan	
ELEVATION (FEET)	[©] DEPTH (FEET)	SYMBOLIC	ELEVATION: 817± FT PROFILE DESCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ O	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	▼ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4	REMARKS
785			LEAN CLAY with Sand- Gray- Hard (CL) <i>(continued)</i> 33.0 784.0 Sandy SILT- Gray- Wet- Extremely 34.4 Dense (ML) 782.6	SB9	11	30 50/5"		67+ C		
780	35 - - -		END OF BORING AT 34.4 FEET.							
	- - 40 -									
775	-									
770	45 - - -									
	- - 50 -									
765	-									
760	55 - - -									
	- 60 -									
755	-									

	6	-								BC	RING B207
		3r	YIE .							BORI	PAGE 1 OF 1
PROJ	ECT	NAME	: HATCI R&D Center Cras	h Building & Test	t Track		PR	OJECT NUMBER:	087829.00	201	
		IBI Gro	pup				PR		N: Superior Tow	nship, Michigan	
	STA	RTED	10/7/21 COM	PLETED: 10/7/	/21 P57)		BC		Hollow-stem Aug	ers	16/0/
	ER:		Dat Dhiing) Rig I	NU.: Dat (ATV	ьэ <i>г</i>)						J3VV
- - -					Ġ	6	~		DRY DENSITY (pcf) ■ 90 100 110 120	 ✓ HAND PENE. M TORVANE SHEAR 	
	TEET	<u>ں</u>			PE/NC	NCHE	S PEF	EFFICIENCY: 80% DATE: 9/16/2021	MOISTURE &	UNC. COMP. VANE SHEAR (PK)	
	TH (I	1BOL DFILE			PLE TY	OVER' STH (II	BLOW	N ₆₀ O	LIMITS (%)	× VANE SHEAR (REM) ⊕ TRIAXIAL (UU)	
	DEF	SYN PRO	ELEVATION: 792± FT PROFILE DESCRIPTION	N	SAM	REC	SPT SIX I	10 20 30 40	10 20 30 40	STRENGTH (KSF)	REMARKS
	-		10 inches of TOPSOIL	791.2	<u>!</u>						
'90	-		Sandy LEAN CLAY- Free Sand Layers- Brown- Sti	quent	SB1	10	223	Q.	14	▼	
	-		3.0	789.0							
	-				SB2	18	4	16	14	4.5+	
	5 -						6			•	
	-				SB3	18	4	19	15	4.5+	
85	-		CLAYEY SILT with Sand Hard (ML/CL)	- Brown-			9				
	-						5	`\ `31	16	4.5+	
	10 -				SB4	18	10	<u> </u>	•		
	-										
80	-		12.0	780.0	4						
	-		LEAN CLAY- Brown- Stif	f (CL)					27		
	-		14.5 15.0 Fine to Medium SAND- E	777.5 Brown- 777.0	SB5	16	4 5 9	19 O			
			Moist- Medium Dense (S								
75	-	-	END OF BORING AT 15	UFEEI.							
	-										
	-	-									
	20 -										
	-										
70	-										
	-										
	25 -	-									
	-	-									
65	-										
	-	1									
		1									
				NOTES: 1. Th 2. Th	e indica e colors	ted st	ratifica ted on	tion lines are approx the symbolic profile	imate. The in-situ are solely for visua	ransitions between m lization purposes and	aterials may be gradua do not necessarily
экО	UNDV	VALER	WAS NUT ENCOUNTERED	rep	present	the in-	situ co	lors encountered.			
BACK	FILL N	IETHO	D: Auger Cuttings								

11/11/21 1:31:42 PM

	IBI Group			a resi	HACK		PR	OJECT NOMBER.	N: Superior To	wnship, Michigan	
DATE STA	RTED:	10/5/21	COMPLETED:	10/5/	21		BO	RING METHOD:	Hollow-stem A	Igers	
RILLER:	MC (D&	T Drilling)	RIG NO.: D&	Г (ATV	B57)		LO	GGED BY: KJT		CHECKED BY	: JSW
DEPTH (FEET)	SYMBOLIC PROFILE	VATION: 800± FT PROFILE DE	SCRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ♥ TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (PK) > VANE SHEAR (REM) ♦ TRIAVIAL (UU) ♥ SHEAR STREINGTH (KSF) 1 2 3 4 	REMARKS
	-	6 inches of TOPS CLAYEY SILT wit Hard (ML/CL)	OIL n Sand- Brown-	799.5	SB1	18	3 6 10 4	21	14	4.5+	
'95 5 -	- <u>5.5</u>	LEAN CLAY with	Sand- Brown-	794.5	SB2 SB3	18 18	8 13 8 13 16	2 39 9	15	4.57	
9010-	<u>10.0</u>	END OF BORING	AT 10.0 FEET.	790.0	SB4	18	8 9 11		16	4.5+	
'85 15-	-										
80 20-	-										
75 25·	-										
	-										

	SME						BC	PAGE 1 OF 1
PROJECT	NAME: HATCI R&D Cente	r Crash Building	g & Test Track	P	ROJECT NUMBER	: 087829.00	BORIN	IG DEPTH: 15 FEET
CLIENT:	IBI Group			P	ROJECT LOCATIO	N: Superior Tow	vnship, Michigan	
	ARTED: 10/6/21	COMPLETED	: 10/6/21	B	ORING METHOD:	Hollow-stem Au	gers	
DRILLER:	MC (D&T Drilling)	RIG NO.: D&	T (ATV B57)	L	OGGED BY: KJT	1	CHECKED BY:	JSW
(FEET) ET)			Ŏ	ES) ER	HAMMER	DRY DENSITY (pcf) 90 100 110 120	 ✓ HAND PENE. M TORVANE SHEAR UNIC COMP. 	
VATION TH (FEE	L PEILE		LE TYPE/	DVERY ath (INCH BLOWS PE	EFFICIENCY: 80% DATE: 9/16/2021	MOISTURE & ATTERBERG LIMITS (%)	 UNC. COMP. VANE SHEAR (PK) X VANE SHEAR (REM) ♦ TRIAXIAL (UU) 	
DEP DEP		SCRIPTION	SAMF	LENG SPT F	= <0 10 20 30 40		SHEAR STRENGTH (KSF)	REMARKS
0-	0.7 8 inches of TOPS	SOIL	807.3		<u> 10 20 30 40 </u>			
	- Sandy LEAN CL	AY- Brown- Stiff	806.0 5.0.1	10 3	8	19		
			000.0 3B1	3	9			
805								
√ 5	LEAN CLAY with Occasional Wet	Sand- Sand Seams-	SB2	5 18 9 13	,29 O	17.	4.5+	
Ţ	Brown- Hard (CL)		3				
	-		SB3	18 7 12	Ĩ		₩.97	
800	8.0		800.0					
			SB4	2 12	'37	16		
10				10				
	LEAN CLAY with	Sand- Gray-						
	Hard (CL)							
795								
			SB5	3 18 7	24	15		
	END OF BORING	GAT 15.0 FEET.	793.0	11				
	-							
	-							
790	-							
	-							
20	_							
	-							
	-							
785	-							
	-							
25	-							
	-							
	-							
780	-							
	-							
GROUM		N NOTE	0, 1 Th- :	tod at	otion lines	vimete The in the	transitions between	
GROOT			2. The colors	depicted of	on the symbolic profile	e are solely for visu	alization purposes and	do not necessarily
V DURING	BORING: 5.5	802.5	represent t	ine in-situ o	colors encountered.			
T AT END	OF BORING: 6.0	802.0						
SACKFILL	WEIHOD: Auger Cuttings							
		1						

Γ

	6		AF								BC	RING P203	
			1 Jan								BORI	PAGE 1 OF 1 NG DEPTH: 25 FEET	
	ЕСТ I т. і		HATCI R&D Ce	enter Crash Build	ing & Test	Track		PR	OJECT NUMBER:	087829.00	nshin Michigan		
DATE	STA	RTED	10/6/21	COMPLETE	D: 10/6/	/21		BC	RING METHOD:	Hollow-stem Aud	ers		
DRILL	ER:	MC (I	D&T Drilling)	RIG NO.:	D&T (ATV	B57)		LO	GGED BY: KJT		CHECKED BY:	JSW	
ELEVATION (FEET)	DEPTH (FEET)	SYMBOLIC	ELEVATION: 808± FT PROFIL	E DESCRIPTION		SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ - O 10 20 30 40	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 10 20 30 40	 ♥ HAND PENE. ♥ TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS	
	-		FILL- Sandy Very Stiff (CL	LEAN CLAY- Brown .)	807.5 n- 806.0	SB1	18	3 4 5	12 O	22	▼		
- 805 	- - 5 -		FILL- CLAYE Gray (ML/CL 0 FILL- Fine to SAND- Brow Medium Den	Medium SILTY n- Moist to Wet- se (SM)	804.0	SB2	14	4 4 5	1 12 0	26		Sample SB2 moisture content test performed on clayey silt. The sample was too	
- 800	-			with Sond Proun t	801.5	SB3	18	3 4 5 6	12	20	4.5+ ▼	disturbed to perform a shear strength test.	
	10 -		2.0	and Brown a	796.0	SB4	18	11 15			4.5+		
795	- - 15 -		CLAYEY SIL Hard (ML/CL	T with Sand- Gray- .)		SB5	18	5 9 11	27	19	4.5*		
790	- 20 —		8.0 Sandy SILT- (ML)	Gray- Wet- Dense	790.0	SB6	16	11 20 13	, , , , , , , , , , , , , , , , , , , 				
785	-		CLAYEY SIL Hard (ML/CL	T with Sand- Gray- .)	783.0	SB7	18	16 21 29	6	7 9	45+		
	-25-		END OF BOI	RING AT 25.0 FEE	<u>/83.0</u> T.	<u>. </u>		23					
780	- - 												
GI	ROUNI	OWATE	& BACKFILL INFORM		[FS: 1 Th	e indica	ted st	ratifica	tion lines are approx	imate The in-situ	ransitions between m	aterials may be gradual	
∑ DUF ▼ AT I	RING END (BORIN DF BOI	DEPTH (F G: 4.5 RING: 7.0	T) ELEV (FT) 803.5 801.0	2. The rep	e colors present f	the in-	situ co	the symbolic profile lors encountered.	are solely for visua	lization purposes and	do not necessarily	
BACKF	ILL M	ETHO	D: Auger Cuttings										
PROJECT NAME: HATCI R&D Center Crash Building & Test Track CLEM: IBI Group PROJECT LOADED: 104/21 PROJECT LOADED: Superior Township, Michigan DATE STARTED: 104/21 COMPLETED: 104/21 BORING METHOD: Hollow-stem Augers PROJECT BUILDE: MC (DAT DRIVE) RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUILDE: MC (DAT DRIVE) RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUILDE: MC (DAT DRIVE) RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUSCHTTON RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUSCHTTON RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUSCHTTON RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUSCHTTON RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUSCHTTON RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUSCHTTON RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUSCHTTON RG NO: DAT (ATV B57) USA BORING METHOD: Hollow-stem Augers PROJECT BUSCHTTON RG NO: DAT (ATV B57) RG NO: DAT (ATV B57) RG NO: DAT (ATV B57) RG NO: MARKING RG NO: MARKING RG NO: MARKING MARKING RG NO: MARKI	1	5M	E										PAGE 1 OF
--	------------------------	----------------------	--	--	--	---	---------------------------------------	---	-----------------	---	--	---	------------------------
ATE STARTED: 10/4/21 COMPLETED: 10/4/21 RELER: NC (DAT Drilling) RELER: NC (DAT Drilling) RELEATION: 672 FT RECOVER 302 10 10 10 10 10 10 10 10 10 10	ROJECT	NAME: H	ATCI R&D Cente	r Crash Buildi	ng & Test Track		PRO PRO	DJECT NU		: 087829.00 N: Superior To	wnship, Mi	BORIN	IG DEPTH: 15 FEET
RILLER: MC (D&T Drilling) RIG NO: DET (ATV B57) LOGGED BY: KJT CHECKED BY: SW Image: State of the st	ATE STA	RTED: 10)/4/21	COMPLETE	D: 10/4/21		BO	RING MET	HOD:	Hollow-stem Au	aers	g	
Image: state of the s	RILLER:	MC (D&T	Drilling)	RIG NO.:	0&T (ATV B57)		LO	GGED BY	KJT		CHE	CKED BY:	JSW
0 0 0 0 0 0 0 0 0 10 FILL File Medium (CL) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 10 0 0 <th>DEPTH (FEET)</th> <th>SYMBOLIC</th> <th>ATION: 812± FT PROFILE DE</th> <th>SCRIPTION</th> <th>SAMPLE TYPE/NO. INTERVAL</th> <th>RECOVERY LENGTH (INCHES) SPT RI OWS PER</th> <th>SIX INCHES</th> <th>HAMMER EFFICIENC DATE: 9/16 N₆₀ O</th> <th>Y: 80% /2021</th> <th>DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 10 20 30 40</th> <th> ♥ HAND F ♥ TORVA ● UNC. C ● VANE S ♦ TRIAXU STRENC </th> <th>PENE. INE SHEAR COMP. SHEAR (PK) SHEAR (REM) AL (UU) IEAR GTH (KSF) 3 HKSF)</th> <th>REMARKS</th>	DEPTH (FEET)	SYMBOLIC	ATION: 812± FT PROFILE DE	SCRIPTION	SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES) SPT RI OWS PER	SIX INCHES	HAMMER EFFICIENC DATE: 9/16 N ₆₀ O	Y: 80% /2021	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL ■ 10 20 30 40	 ♥ HAND F ♥ TORVA ● UNC. C ● VANE S ♦ TRIAXU STRENC 	PENE. INE SHEAR COMP. SHEAR (PK) SHEAR (REM) AL (UU) IEAR GTH (KSF) 3 HKSF)	REMARKS
10 80.0 804.0 18 3 5 5 1	0- 10 5 - 05		6 inches of TOPS FILL- Fine to Mec SAND- Brown- M Dense (SM) FILL- LEAN CLA' Gray- Medium (C LEAN CLAY with Hard (CL)	SOIL lium SILTY oist- Medium Y- Brown and L) Sand- Brown-	811.5 810.5 SB1 809.0 SB2 SB3	18 18 18	5 7 5 7 10 3 5 7			25 19 18 18 33 19	0.8	4.5+ ▼ ▼	
20- 35 - 20- 30 - 35 - 36 - 37 - 38 - 39 - 30	10 -)0 ¥ 15-	8.0	LEAN CLAY with Stiff (CL)	Sand- Gray- Ve	804.0 SB4 Pry 797.0	18	3 5 6 4 5 6	 		19		v	
	95	-	END OF BORING	3 ΑΓ 15.0 FEE1									
	20 -	-											
	25 -	-					-						
		-											
GROUNDWATER & BACKFILL INFORMATION INTER: 1 The indicated stratification lines are approximate. The in situ transitions between materials may be a	GROUN	DWATER & BA			ES: 1 The indice	ited strati	ificati	on lines or	annroy	vimate. The in site	transitions	between m	aterials may be gredue
DEPTH (FT) ELEV (FT) Z DURING BORING: 1.5 810.5 AT END OF BORING: 13.0 799.0		BORING: OF BORING	DEPTH (FT) EI 1.5 13.0	.EV (FT) 810.5 799.0	2. The indica 2. The colors represent	the in-site	d on t	the symboli ors encoun	c profile	are solely for visu	alization p	urposes and	do not necessarily

1 51	ME					D	PAGE 1 OF 1
PROJECT NAM	E: HATCI R&D Center Crash	Building & Test Track	k P		: 087829.00	BORI	NG DEPTH: 20 FEET
CLIENT: IBI Gr	roup		Р		N: Superior Tow	nship, Michigan	
	D: 10/7/21 COM	PLETED: 10/7/21	В.		Hollow-stem Aug	ers	1014/
DRILLER: MC	(D&I Drilling) RIG N	O.: D&I (AIV B57)	L	OGGED BY: KJI	1	CHECKED BY:	JSW
ELEVATION (FEET) ODEPTH (FEET) SYMBOLIC PROFILE	ELEVATION: 827± FT PROFILE DESCRIPTIO	N 826.5	RECOVERY LENGTH (INCHES) SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 $N_{60} - O$	DRY DENSITY (pcf) 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40 : : : : :	 ♥ HAND PENE. ♥ TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
825 -	Ell L-Sandy / FAN CLAY	SB1	18 4 5		18	4.5+	
5-	Frequent Topsoil Layers- and Dark Brown- Hard to (CL)	Brown /ery Stiff	18 5 5 18 2 18 2		22	4.5+	Loss-On-Ignition (LOI) test performed on Sample SB2 indicates an organic content of 2.9 percent.
10-	9.0 LEAN CLAY with Sand- B Very Stiff (CL)	818.0 sB4	18 2 5	9 0	22	▼	Loss-On-Ignition (LOI) test performed on Sample SB3 indicates an organic content of 4.3 percent.
815	CLAYEY SILT- Brown and CLAYEY SILT- Brown and Very Stiff (ML/CL) Fine to Medium SILTY SA Brown- Moist- Medium De	816.0 Gray- 815.0 ND- nse (SM) 814.0	18 5 18 7 8		19	▼	
- 15 –	CLAYEY SILT- Brown and Very Stiff (ML/CL) 16.0	811.0 SB6	18 5 9 3		19	▼	
810	Fine to Coarse SILTY to C SAND- Brown- Wet- Medi Dense to Dense (SM/SC)	LAYEY um	18 6 8 7 18 11				
2011.022	END OF BORING AT 20.) FEET.	13				
805 - - -							
25 –							
800 - - -							
Groundwatt	ER & BACKFILL INFORMATION DEPTH (FT) ELEV (FT) ING: 16.0 811.0 DRING: 16.0 811.0	NOTES: 1. The indic 2. The color represent	ated stratific rs depicted c t the in-situ c	ation lines are approx n the symbolic profile olors encountered.	ximate. The in-situ e are solely for visua	transitions between n lization purposes and	naterials may be gradua d do not necessarily
3ACKFILL METH	OD: Auger Cuttings						

(51	ME								BC	PAGE 1 OF 1
PRO	JECT	NAME	E: HATCI R&D Center	Crash Building	& Test	Track		PR	OJECT NUMBER:	: 087829.00	BORI	NG DEPTH: 15 FEET
CLIE	NT:	BI Gr	oup					PR	OJECT LOCATIO	N: Superior Tow	nship, Michigan	
DAT	E STA	RTED): 10/5/21	COMPLETED:	10/5/	21		BC	RING METHOD:	Hollow-stem Aug	ers	1014
DRIL	LER:	MC	(D&T Drilling)	RIG NO.: D&T	Γ (ATV	B57)		LO	GGED BY: KJT		CHECKED BY:	JSW
N (FEET)	ET)					.ON	HES)	ZER	HAMMER EFFICIENCY: 80%	DRY DENSITY (pcf) 90 100 110 120	 ▼ HAND PENE. ▲ TORVANE SHEAR ● UNC. COMP. 	
EVATION	ЕРТН (FE	MBOLIC ROFILE				MPLE TYPE ERVAL	COVERY VGTH (INC	T BLOWS F	DATE: 9/16/2021 N ₆₀ O	MOISTURE & ATTERBERG LIMITS (%) PL MC LL	 ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR 	
ш		ЯЧ	PROFILE DES			SAI	ШШ	ଟ୍ରଟି	10 20 30 40	10 20 30 40	STRENGTH (KSF) 1 2 3 4	REMARKS
F					811.3		1	2	40			
-810 -	•		Very Stiff (CL)	vn and Gray-	809.0	SB1	18	4 5	Ŕ		▼	
-	5-					SB2	18	7 11 14	×33	17	4.5+	
-								4	1	40	45	
- 805			LEAN CLAY with S Hard (CL)	Sand- Brown-		SB3	18	8 13	O I		4.5↑	
-			· · · · · · · · · · · · · · · · · · ·			SB4	18	3	28	18	4.5+	
-	10 -						10	13				
- 800			12.0		800.0	-						
-			LEAN CLAY- Gray	- Very Stiff (CL)	708.0							
_			CLAYEY SILT- Gr 15.0 (ML/CL)	ay- Very Stiff	797.0	SB5	18	12 16	37 O	15	▼	
-		-	END OF BORING	AT 15.0 FEET.								
- 795		-										
-												
-	20 -	-										
- - 790												
-		-										
-		-										
-	25 -											
- 785												
-												
	GROUN	DWATE			· 1 TL-	a india-	tod at	otifica	tion lines are appres	imato. The in site	transitions botweer	atorials may be and the
GRO	DUNDV	VATER	R WAS NOT ENCOUNTE	RED	2. The rep	e colors resent f	depic the in-	ted on situ co	the symbolic profile lors encountered.	are solely for visua	lization purposes and	do not necessarily
BAC	KFILL N	ЛЕТНО	DD: Auger Cuttings									
		_										

0		51	M	Ε																					BC	DRI	N G PAGE	P2)7 F 1
PRO.	JECT		E: H/	ATCI R	&D Ce	enter	Crasl	n Buil	ding	& Test	Track		PR		ЕСТ			:: 08	7829	9.00 prior ⁻	Гомп	ehin	Mic	B	ORII n	NG DE	EPTH:	10 FE	ET
	ы. = стл		0up	1/1/21			COM		ED.	10///	21		BC						Supe	tom			, iviic	inga	[]				
DRIL	LER:	MC	(D&T	Drilling)		I	RIG N	10.:	D&T	(ATV	B57)		LC	GG	ED	BY:	KJT	TION	000-3		Auge	, c	HEC	KED	BY:	JSV	V		
ELEVATION (FEET)	DEPTH (FEET)	SYMBOLIC PROFILE	ELEVA	TION: 80	3± FT PROFIL	E DESC	RIPTIC	N			SAMPLE TYPE/NO. INTERVAL	RECOVERY LENGTH (INCHES)	SPT BLOWS PER SIX INCHES	H/ EF D/ N _e	AMM FICI ATE: 0 C	ER ENCY 9/16/2	: 80% 021 40	00 90 ₩ ₽1 ₽1 10	RY DE (pcf) 100 IOIST TTER LIMIT 20	ENSIT ■ 110 1 URE & BERG S (%) C LL 30	Y 120 3 3 3	▼ H ■ T ● U ● V ◆ T STF 1	AND PE ORVAN NC. CO ANE SH RIAXIAL SHE RENG 2	ENE. E SHEA MP. IEAR (F LAR (F LAR (F AR AR TH (K 3	AR PK) REM) SF)		REM	ARKS	
_			0.7	8 inche	s of T	OPSO	IL			802.3																			
-			3.0	Sandy (CL)	LEAN	CLAY	- Brov	/n- Sti	iff	800.0	SB1	18	4 4 5		12 Q	•			21		•		V						
-	5-										SB2	18	5 7 12			\25 \			17		•				4.5+				
-				Hard (C	CL)	with Sa	and- E	srown	-		SB3	18	6 11		· · · · · · · · · · · · · · · · · · ·	1	3		14		••••••		•	•	4.5+				
- 795			8.0	LEAN	CLAY-	Frequ	ent Si	It Lay	ers-	795.0			14								•								
			10.0	Brown-	Very S	Stiff (C	L)		-т	793.0	SB4	18	16 16				. 43 O		15					V					
- 790 - - - - - 785 -	- - - - - - - - - - - - - - - - - - -	-																			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
- - - 780 -	 - - - - - - -	-															· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
- - 775 -		-															•		· · · · · · · ·	•									
GRO	groun DUNDV	DWATI VATE	R&BA	CKFILL I NOT E	NFORM	ATION INTER	ED	NC	DTES:	1. The 2. The rep	e indica e colors resent f	ited str depic the in-	atifica ted on situ cc	ition the plors	lines sym ence	s are a bolic ounte	appro: profile red.	ximate e are s	e. Th solely	e in-s for v	situ tr isuali	ansit izatio	ions n pur	betwe pose	een m s anc	naterial I do no	ls may t neces	be gra sarily	dual.
BACK	(FILL N	ЛЕТНО	DD: /	Auger Cutt	ings																								

05	ME					BORIN	PAGE 1 OF 1
ROJECT NAN	IE: HATCI R&D Center Cras Group	h Building & Test Track	PR PR	OJECT NUMBER	: 087829.00 N: Superior Tov	vnship, Michigan	
DATE STARTE	D: 10/6/21 COM C (D&T Drilling) RIG	IPLETED: 10/6/21 NO.: D&T (ATV B57)	BC LC	DRING METHOD: DGGED BY: KJT	Hollow-stem Aug	gers CHECKED BY:	JSW
	ELEVATION: 812± FT PROFILE DESCRIPT	NO SAMPLE TYPE/NO.	RECOVERY LENGTH (INCHES) SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ O	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ✓ HAND PENE. M TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ◆ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
10 ⊈	FILL- Sandy LEAN CLA Stiff (CL)	/- Brown- 809.0 SB2	1 18 1 1 6 18 10	3	23	▼ 4.5+	
¥ 5- -)5 -	LEAN CLAY with Sand- Hard (CL)	Brown- SB3	14 5 18 11 17		19		
	10.0 END OF BORING AT 10	802.0 SB4	18 9 13	29 ©	21	•	
- - 15 - - -							
20 -							
- 00 - -							
25 - - 35 - -							
	TER & BACKFILL INFORMATION	NOTES: 1. The indicat	ted stratifica	tion lines are approx	kimate. The in-situ	transitions between m	aterials may be gradu
Z DURING BOR	DEPTH (FT) ELEV (FT) RING: 3.0 809.0 SORING: 5.0 807.0	2. The colors represent t	depicted on he in-situ co	the symbolic profile lors encountered.	e are solely for visua	alization purposes and	do not necessarily
ACKFILL METH	IOD: Auger Cuttings						

SME						BC	PAGE 1 OF 1
PROJECT NAME: HATCI R8	D Center Crash Building & Test	Track	PR	OJECT NUMBER	087829.00	BORI	NG DEPTH: 20 FEET
CLIENT: IBI Group			PR	OJECT LOCATIO	N: Superior Town	nship, Michigan	
DATE STARTED: 10/6/21	COMPLETED: 10/6/	21	BO	RING METHOD:	Hollow-stem Aug	ers	
DRILLER: MC (D&T Drilling)	RIG NO.: D&T (ATV	B57)	LO	GGED BY: KJT		CHECKED BY:	: JSW
DEPTH (FEET) DEPTH (FEET) PROFILE PROFILE StymBollic		AMPLE TYPE/NO. VTERVAL RECOVERY	ENGTH (INCHES) BPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₆₀ O	DRY DENSITY (pcf) ■ 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL	 ♥ HAND PENE. ■ TORVANE SHEAR ● UNC. COMP. ■ VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIAXIAL (UU) SHEAR STRENGTH (KSF) 	REMARKS
0.5 6 inches	s of TOPSOIL 816.5.	~~ 뜨		10 20 30 40	10 20 30 40		ILEMAKKS
- 815 - Fine to I Brown- - 810	Vedium SILTY SAND- Moist- Medium Dense (SM)	SB1 3 SB2 1 SB3 1	8 2 3 8 10 7 8 8 14 6 6	15 0 21 0 7 16 0 16			 Sample SB1 loss-by-wash test indicates 12.1 percent soil fines content. Sample SB2 loss-by-wash test indicates 17.5 percent soil fines content.
Fine to 1 10 - Fine to 1 SAND- Dense (11.5	Medium SILTY to CLAYEY Brown- Wet- Medium SM/SC) 805.5	SB4 1 SB5 1	18 5 5 10 5 9	1 13 	17	45+	
LEAN C Hard (C 15.5 16.0 Fine to 1	LAY with Sand- Gray- L) Medium SAND- Gray-	SB6 1	18 5 9	19	17	•	
-800 - Moist (S CLAYE 18.0 (ML/CL) 18.0 (ML/CL) 20 END OF	Arrow Arrow 799.0 Y SILT- Gray- Hard 799.0 SILT- Gray- Wet- Extremely 797.0 ML) 797.0 F BORING AT 20.0 FEET. 797.0	SB7 1	15 32 43 15 18 29 48		00 14 D ◆ D3 D3	45+	
- 795 -							
25 -							
- /90 -							
GROUNDWATER & BACKEILL IN		indicated	etratificat	ion lines are oppres	imate. The in situ t	ransitions botware	natorials may be gradual
✓ DURING BORING: ✓ AT END OF BORING:	PTH (FT) ELEV (FT) 8.0 809.0 15.0 802.0	e indicated e colors de resent the	i stratificat epicted on in-situ col	the symbolic profile lors encountered.	amate. The In-situ t	ization purposes and	nateriais may be gradual. d do not necessarily
BACKFILL METHOD: Auger Cuttin	Igs						

Γ

PROJECT							PAGE 1 OF
	TNAME: HATCI R&D Center Cra	sh Buildina & Test Trac	k Pi	ROJECT NUMBER	: 087829.00	BORIN	NG DEPTH: 10 FEET
CLIENT:	IBI Group		PI		DN: Superior Tow	nship, Michigan	
DATE STA	CARTED: 10/7/21 COM	MPLETED: 10/7/21	B	ORING METHOD:	Hollow-stem Aug	ers	
ORILLER:	R: MC (D&T Drilling) RIG	NO.: D&T (ATV B57)	L	DGGED BY: KJT		CHECKED BY:	JSW
ELEVATION (FEET) DEPTH (FEET)		NOI SAMPLE TYPENO. INTERVAI	RECOVERY LENGTH (INCHES) SPT BLOWS PER SIX INCHES	HAMMER EFFICIENCY: 80% DATE: 9/16/2021 N ₈₀ - O 10 20 30 40	DRY DENSITY (pcf) → 90 100 110 120 MOISTURE & ATTERBERG LIMITS (%) PL MC LL 10 20 30 40	 ♥ HAND PENE. ♥ TORVANE SHEAR ● UNC. COMP. ● VANE SHEAR (PK) × VANE SHEAR (REM) ♦ TRIAXIA (UU) SHEAR STRENGTH (KSF) 1 2 3 4 	REMARKS
800	<u>0.5 6 inches of TOPSOIL</u> Sandy LEAN CLAY- Bro Stiff (CL) 3.0	800.5 wn- Very SB1 798.0	18 3 4	9	19	▼	
5	LEAN CLAY with Sand- 5 - Hard (CL)	Brown- SB2	18 6 18 10 14	32	14	4.5+ ▼	
795	- CLAYEY SILT- Brown- ł (ML/CL)	Hard	18 6 18 8 13		14	4.5+ ▼	
	END OF BORING AT 10		18 11 19		13	4.5+	
15	5-						
785	-						
20	0						
25	5-						
GROUI	UNDWATER & BACKFILL INFORMATION	NOTES: 1 The india	ated stratific	ation lines are appro-	ximate The in-situ	transitions between m	aterials may be gradu
GROUND	DWATER WAS NOT ENCOUNTERED	2. The color represen	rs depicted o t the in-situ c	n the symbolic profile olors encountered.	are solely for visua	lization purposes and	do not necessarily

.....

Project: HATCI R&D Center | Crash Building & Test Track Project #: 087829.00 Date: October 14, 2021

SAMPLE INFO	RMATION	TEST RESULTS	
Sample Description:	LEAN CLAY with Sand	Unconfined Compressive Strength (psf):	5,270
Sample Location:	B202 3ST4	Strain at Failure (%):	15.0
Sample Depth:	8.0'-10.0'	Water Content (after shear) (%):	16.4
USCS Classification:	CL	Dry Density (pcf):	122.0
Height (in):	5.65	Average Strain Rate (%/min):	1.4
Diameter (in):	2.82		
Height/Diameter Ratio:	2.0	Hand Penetrometer / Torvane:	3.00

Project: HATCI R&D Center | Crash Building & Test Track Project #: 087829.00 Date: October 14, 2021

SAMPLE INFO	RMATION	TEST RESULTS	
Sample Description:	LEAN CLAY with Sand	Unconfined Compressive Strength (psf):	5,420
Sample Location:	B204 3ST5	Strain at Failure (%):	14.8
Sample Depth:	10.0'-12.0'	Water Content (after shear) (%):	18.5
USCS Classification:	CL	Dry Density (pcf):	117.5
Height (in):	5.67	Average Strain Rate (%/min):	1.4
Diameter (in):	2.78		
Height/Diameter Ratio:	2.0	Hand Penetrometer / Torvane:	2.75

ONE-DIMENSIONAL SWELL OR SETTLEMENT POTENTIAL OF COHESIVE SOILS ASTM D4546

Project: H	ATCI R&D Cente	r Crash Building & Test Trac	Project Numbe	r:	087829.00	
Location: S	uperior Townshi	p, Michigan	Date Started:	10/18/21	Test Frame Number:	Е
Client: IE	I Group		Engineer:	JSW	Tested by: KJT	
SAMPLE IDENT	IFICATION					
Sample Loca	tion	Type of Sample	Description			
B202 3S	T4 (8.0'-10.0')	Undisturbed Shelby Tube		LEA	AN CLAY with Sand	

Loading Method (A), (B) or (C)	Cyclic Loading	Initial Stone & Reservoir Water Conditions
В	x	Dry stone and reservoir; water after initial consolidation

ONE-DIMENSIONAL SWELL OR SETTLEMENT POTENTIAL OF COHESIVE SOILS ASTM D4546

Project:	HATCI R&D Center	r Crash Building & Test Trac	Project Numbe	r: (087829.00	
Location:	Superior Townshi	p, Michigan	Date Started:	10/21/21	Test Frame Number:	Е
Client:	IBI Group		Engineer:	JSW	Tested by: KJT	
SAMPLE ID	ENTIFICATION					
Sample L	ocation	Type of Sample	Description			
B204 3	3ST5 (10.0'-12.0')	Undisturbed Shelby Tube		LEA	N CLAY with Sand	

Loading Method (A), (B) or (C)	Cyclic Loading	Initial Stone & Reservoir Water Conditions
В	х	Dry stone and reservoir; water after initial consolidation

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX ASTM D4318 - A

PROJECT: HATCI R&D Center | Crash Building & Test Track LOCATION: Superior Township, MI PROJECT#: 087829.00 DATE: October 18, 2021

DATE OBTAINED: October 14, 2021 SAMPLE NUMBER: SB2 3.5'-5.0' SAMPLE LOCATION: P204 SAMPLE DESCRIPTION: LEAN CLAY with Sand TECHNICIAN: Kyle Tobin

> TEST METHOD: ASTM D4318 METHOD - A

TEST DATA:

LIQUID LIMIT

Point #:	1	2	3
Wet Wt + Tare, g:	26.72	27.29	30.01
Dry Wt + Tare, g:	24.01	24.43	26.32
Tare Wt.:	15.65	15.78	15.59
Water Content:	32.42	33.06	34.39
Number of Blows:	35	26	19

Water Content	ΝΙΔ
corrected for method B:	

PLASTIC LIMIT TEST

Wet Wt + Tare, g:	20.22	19.61		
Dry Wt + Tare, g:	19.50	18.98		
Tare Wt, g:	15.62	15.44		
Water Content:	18.56	17.80		

PLASTICITY INDEX

LIQUID LIMIT:	33
PLASTIC LIMIT:	18
PLASTICITY INDEX:	15

CLASSIFICATION: CL

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX ASTM D4318 - A

PROJECT: HATCI R&D Center | Crash Building & Test Track LOCATION: Superior Township, MI PROJECT#: 087829.00 DATE: October 18, 2021

DATE OBTAINED: October 14, 2021 SAMPLE NUMBER: SB1 1.0'-2.5' SAMPLE LOCATION: P206 SAMPLE DESCRIPTION: LEAN CLAY TECHNICIAN: Kyle Tobin

> TEST METHOD: ASTM D4318 METHOD - A

TEST DATA:

LIQUID LIMIT

Point #:	1	2	3
Wet Wt + Tare, g:	25.69	30.39	29.29
Dry Wt + Tare, g:	23.27	26.71	25.80
Tare Wt.:	15.74	15.80	15.80
Water Content:	32.14	33.73	34.90
Number of Blows:	35	25	19

Water Content	NΙΔ
corrected for method B:	INA

PLASTIC LIMIT TEST

Wet Wt + Tare, g:	20.07	20.70		
Dry Wt + Tare, g:	19.38	19.92		
Tare Wt, g:	15.62	15.63		
Water Content:	18.35	18.18		

PLASTICITY INDEX

LIQUID LIMIT:	34
PLASTIC LIMIT:	18
PLASTICITY INDEX:	16

CLASSIFICATION: CL

APPENDIX B

RELEVANT DATA FROM PREVIOUS GEOTECHNICAL EVALUATION REPORT (SME PROJECT NO. 044853.00) DATED AUGUST 7, 2003 – BORING LOCATION DIAGRAM AND BORING LOGS (B1-B12)

FILE NAME S:44000\44853-01.DWG

PROJ CLIEN	ECT L	OCATION: SUPERIOR TOWNSH TETRA TECH MPS	IIP, MI	CHIG	AN		BY: G PROJE	D/KLW	DATE:	7/18/03 14853		B S	oring Heet:	B1 1	
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 787	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDAR TEST RES (N-values)	D PENET ISTANCE O 20 3	RATION S 0 40 50	NATUR/ DENSIT (pcf) MOISTL ATTERE	AL DRY Y ■ JRE, % ↓ BERG ⊢→ 20	110 LIMITS 30 40	∇ ○ ○ × ⊕ SHE 0.0	HAND PEN TORVANE UNCONFIN VANE SHE REMOLDE TRIAXIAL	LEGEND IETROMET SHEAR TE IED COMPI GAR TEST D VANE SH TEST ENGTH (K 2.0 3	ER TEST IST RESSION IEAR (SF) .0 4	TEST .0 5.0
0- ¥ 5-		Driller reported 12 inches of Clayey Topsoil Clayey Fine to Medium Sand- Some Silt- Trace Gravel- Occasional Topsoil Seams- Brown- Moist- Loose (SC) Silty Clay- Trace Sand & Gravel- Occasional Sand Layers- Brown- Very Stiff (CL)	ss1	3 3 3 4 5 8					•						
10 -			SS3 SS4	10 17 17 24 65										 	4.5+
15 \		Sandy Clay- Some Silt- Trace Gravel- Occasional Sand Seams- Very Stiff to Hard (CL)	SS5	18 37 74			_111→								4.5+
20 -		END OF BORING AT 19.5 FEET.	SS6	29 57			○57//6" →							- - - - - - - - - - - - - - - - - - -	4.5+
25 -	-													, 	- - - - - - - - - - - - - - - - - - -
30 -	-													 	
35 -		WATER LEVEL OBSERVATIONS		lotes:	1. THE INDIC	ATED STF	ATIFICATION	INES ARE	APPROXIMAT		J, THE TF	RANSITION			ALS MAY

PROJ CLIEI	IECT L	OCATION: SUPERIOR TOWNSH TETRA TECH MPS	IP, M	DEVE CHIG/	AN	ING A/E: TE BY: GE PROJE	TRATECH M D/KLW DA CT NUMBER:	TE: 7/18/03 PG44853	BOR	RING B2 ET: 1
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 785	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENET TEST RESISTANCE (N-values) 10 3	RATION ES 60 40 50	NATURAL DRY DENSITY (pcf) MOISTURE, % ATTERBERG 0 10 20	0 110 ◆ ⊢ LIMITS 0 30 40 0.	V HAND PENETF ✓ TORVANE SHEAR ○ UNCONFINED ● VANE SHEAR × REMOLDED V, ◆ TRIAXIAL TES SHEAR STRENG 0 0 1.0 2.0	SEND ROMETER TEST EAR TEST COMPRESSION TEST TEST ANE SHEAR T GTH (KSF) 3.0 4.0 5.0
0		Clayey Fine to Medium Sand- Some Silt- Trace Gravel- Dark <u>Brown & Black- Moist (SC/Topsoil)</u> Silty Clay- Some Sand- Trace Gravel- Brown- Stiff (CL)	– SS1	2 2 3				•	∇	
<u>ج</u> 5 -		Clayey Fine to Coarse Sand- Some Gravel- Trace Silt- Brown- Wet- Medium Dense (SC)	sS2	3 5 10 5 10			•			
10 -			SS4	10 5 9 14			•			
15 -		Sandy Clay- Some Silt & Gravel- Occasional Fine to Medium Sand Layers- Gray- Stiff to Hard (CL)	SS5	50 65/4"		○65//4" →	•			4.5+
20 -		END OF BORING AT 20 FEET.	SS6	27 42 55			•			4.5+
25 -						I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I				
30 -	-									
35 -	-									

PROI	Soil and materials engineers, inc. PROJECT NAME: PROPOSED RESEARCH & DEVELOPMENT BUILDING AVE: TETRA TECH MPS											
PROJ	ECT N ECT L IT:	OCATION: SUPERIOR TOWNSH TETRA TECH MPS	IIP, MI	CHIG	AN	BY: G	ETRATECHIN D/KLW DA	TE: 7/25/03 PG44853	BORING E Sheet: 1	33		
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 786	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PEN TEST RESISTAN (N-values) 10	IETRATION ICES 30 40 5	NATURAL DRY DENSITY (pcf) MOISTURE, % ATTERBERG 0 0 10 20	00 110 → ↓ LIMITS 0 30 40 0.0	LEGEND HAND PENETROMETE TORVANE SHEAR TES UNCONFINED COMPRI VANE SHEAR TEST REMOLDED VANE SHE TRIAXIAL TEST SHEAR STRENGTH (KS 1.0 2.0 3.(R TEST iT ESSION TEST EAR SF) 0 4.0 5.0		
0 		Silty Fine Sand- Trace Clay- Dark Brown- Moist (SM/Topsoil) Sandy Silt- Some Clay- Brown- Moist to Wet- Loose to Medium Dense (ML)	SS1 SS2	2 2 5 4 4 8	Q			•				
- - - 10 -		Sandy Silt- Trace to Some Clay- Gray- Wet- Medium Dense to Loose (ML)	SS3 SS4	3 4 6 3 4 5								
- - 15 – -		Clayey Silt- Trace to Some Sand- Gray- Very Stiff (ML)	SS5	5 5 6				•				
- 20 -		Silty Clay- Trace to Some Sand & Gravel- Gray- Hard (CL) END OF BORING AT 20 FEET.	SS6	7 18 20			•			4.5+		
30 -												
	GROUNE	WATER LEVEL OBSERVATIONS		lotes:	1. THE INDICATED S BE GRADUAL. 2. GROUNDWATED				TRANSITION BETWEEN	MATERIALS MAY		
J ¥ C U DRILLI	BROUNE JPON CO	WATER ENCOUNTERED MPLETION OF DRILLING M DRILL METHOD: Solid-stu	em Au	gers	WATER LEVEL	DURING DRIL	LING: 2.5	WATER LEVEL	HOURS AFTER COMP	LETION:		

PROJ	ECT LO	OCATION: SUPERIOR TOWNSH TETRA TECH MPS	IIP, MI	CHIG	AN	BY: GI PROJE	D/KLW DATE: CT NUMBER: PG4	7/25/03 14853	B	ORING B4 HEET: 1	
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 790	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENETR TEST RESISTANCES (N-values) 10 20 30	ATION 40 50	NATURAL DRY DENSITY ■ (pcf) 90 100 MOISTURE, % 4 ATTERBERG → 0 10 20	110 ▶ LIMITS 30 40 0	 ✓ HAND PEN ✓ TORVANE ○ UNCONFIN ■ VANE SHE ★ REMOLDE ♦ TRIAXIAL SHEAR STRI 0.0 1.0 2 	LEGEND IETROMETER TEST SHEAR TEST IED COMPRESSION TEST AR TEST D VANE SHEAR TEST ENGTH (KSF) 2.0 3.0 4.0 5.(
0 -		Driller reported 6 inches of Sandy Topsoil- Dark Brown Clayey Fine to Medium Sand- Some Silt- Trace Gravel- Brown- Moist- Loose (SC)	SS1	4 4 4	9						
- 5-		Fine Sand- Trace to Some Silt- Occasional Silty Clay Layers- Brown- Moist to Wet- Medium Dense (SP-SM)	SS2	4 5 8		 					
-		Sandy Silt- Some Clay- Brown- Wet- Medium Dense (ML)	SS3	5 11 12							
- 10¥ - -	π_{1}	Fine Sand- Some Silt- Trace Clay-	SS4	4 7 6							
- 15 - -		Loose (SM)	SS5	3 4 5							
- 20 —		Sandy Silt- Some Clay- Gray- Wet- Medium Dense (ML) END OF BORING AT 20 FEET.	SS6	5 7 10	6						
-	-										
25 -	-										-
- 30 —	-										
- - 35 —											
-											

PROJI CLIEN	ECT L T:	OCATION: SUPERIOR TOWNSH TETRA TECH MPS	IP, MI	CHIGA	AN		BY: G PROJE	D/KLW	DA MBER:	TE: 7/24/03 PG44853	3	B S	ORING B HEET: 1	5	
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 800	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD TEST RESIS (N-values) 10 2	PENETR TANCES	ATION <u>40 50</u>	NATUF DENSI (pcf) 9 MOIST ATTEF 0 0 1	AL DRY TY ■ 0 10 URE, % BERG 0 2(00 110 ◆ ⊢ LIMITS 0 30 40		HAND PEN TORVANE UNCONFIN VANE SHE REMOLDE TRIAXIAL	LEGEND IETROMETER SHEAR TES IED COMPRE AR TEST D VANE SHE FEST ENGTH (KS 2.0 3.0	R TEST T ESSION T AR F)	те s т _0 5.0
U - -		Sandy Topsoil Clayey Fine to Medium Sand- Some Silt- Trace Gravel- Brown- Moist- Loose (SC)	SS1	2 3 4											
5 -			SS2	5 9 15			 								4.5+
-		Silty Clay- Trace to Some Sand- Trace Gravel- Occasional Silt Partings- Brown- Hard (CL)	SS3	10 10 16					•						4 <u>.</u> 5+ ▽
- 10 —			SS4	8 8 10	ļ d				•						4 <u>.5</u> +
¥ ¥ 15 −		Fine Sand- Some Silt- Brown- Wet- Medium Dense (SM)	SS5	3 4 6											
- - 20 —		Silty Clay- Trace Sand- Occasional Silt Seams- Gray- Very Stiff (CL)	SS6	11 17 24											
-		END OF BORING AT 201 EET.													
25 -															
- 30 —															
- - 35 –															
_						, , , , , , , ,									

	ECT L T:	OCATION: SUPERIOR TOWNSH	P, MI		AN		BY: (PROJ	GD/KLW	DA1 MBER:	FE: 7/24/03 PG44853	1	B(Sł	DRING B6 HEET: 1	
(FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 804	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD TEST RESIS (N-values)	PENET STANCE	RATION S	NATUF DENSI (pcf) MOIST ATTEF 50 0 1	RAL DRY TY ■ 0 100 URE, % - RBERG 0 20) 110 ◆ I LIMITS 30 40		L AND PENI ORVANE S NCONFINI ANE SHEA EMOLDEE RIAXIAL T AR STRE	EGEND ETROMETER 1 SHEAR TEST ED COMPRESS AR TEST VANE SHEAF EST NGTH (KSF) .0 3.0	EST SION TEST { 4.0
0		Topsoil- Brown	SS1	4 5								 		
			SS2	6 5 11								 		4.5
		Silty Clay- Trace to Some Sand- Trace Gravel- Occasional to	SS3	14 10 13								 		4.5
		Frequent Silt Partings- Brown- Hard (CL)	SS4	24 11 17								 	 	4 <u>.5</u>
ہے ر ر				23			· / · · / ·					 		
- - 		Silty Clay- Trace to Some Sand- Trace Gravel- Gray- Very Stiff (CL)	SS5	8 10 11								 		
- - - -		Sandy Silt- Some Clay- Gray- Wet- Dense (ML)	SS6	11 14 24								 		
-		END OF BORING AT 20 FEET.										 		
- - -												 		
-									 			 		
- (- -												 		
- - 5 -												 		
 	ROUND	WATER LEVEL OBSERVATIONS	 _ ■	lotes:	1. THE INDICA BE GRADUAL.	TED STR	ATIFICATION	N LINES AR	E APPROX	IMATE. IN SITU	J, THE TR	ANSITION	BETWEEN MA	TERIALS M

PROJ	ECT L IT:	OCATION: SUPERIOR TOWNSH TETRA TECH MPS	IIP, MI	CHIG/	AN	BY: GI PROJE	D/KLW D	ATE: 7/25/03 R: PG44853	E	BORING B7	
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 795	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD PENETR TEST RESISTANCES (N-values)	ATION 40 50	NATURAL DF DENSITY (pcf) 90 MOISTURE, ATTERBERG 0 10	RY ■ 100 110 % ◆ 6 ⊢ LIMITS 20 30 40	 ✓ HAND PE ☑ TORVANE ○ UNCONFI ■ VANE SH × REMOLD ♦ TRIAXIAL SHEAR STR 0.0 1.0 	LEGEND NETROMETER TEST SHEAR TEST NED COMPRESSION EAR TEST ED VANE SHEAR TEST :ENGTH (KSF) 2.0 3.0 4	TEST 4.0 5.0
0 - -		Clayey Fine Sand- Some Silt- Dark Brown- Moist- Loose (SC/Topsoil) Clayey Fine Sand- Some Silt- Trac Gravel- Brown- Moist- Loose (SC)	ss1 e	2 2 5 5	٩			•			
5 - - -		Sandy Silt- Some Clay- Brown- Moist to Wet- Medium Dense (ML)	SS2 SS3	5 10 5 7 9							
- 10 - -			SS4	6 6 4							
15 -		Sandy Silt- Some Clay- Gray- Wet- Medium Dense (ML)	SS5	5 8 12							
⊑ - 20 -		END OF BORING AT 20 FEET.	SS6	5 8 14							
- - 25 –											
-											
30 -											
35 -	BOUN		N	otes:	1. THE INDICATED STRATE		INES ARE APPF	ROXIMATE. IN SITU	J, THE TRANSITIO	N BETWEEN MATERI.	ALS MAY

PROJ CLIEN	ECT L IT:	OCATION: SUPERIOR TOWNSH TETRA TECH MPS	IIP, MI	CHIGA	AN		BY: G PROJE	D/KLW E CT NUM	DATE: BER: PO	: 7/25/03 G44853		ВО SH	RING E EET: 1	38	
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 802	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDAF TEST RES (N-values)	RD PENETR SISTANCES) O 20 30	ATION 40 50	NATURA DENSIT (pcf) MOISTL ATTERE	AL DRY Y ■ 100 IRE, % BERG ⊢ 20	110 ♦ ⊣ LIMITS 30 40		LE ND PENE RVANE SI CONFINE NE SHEAI MOLDED IAXIAL TE R STREN	EGEND TROMETE HEAR TES D COMPRI R TEST VANE SHE IST IGTH (KS) 3.0	R TEST T ESSION TI EAR (F)) 4.(EST
0 -		Clayey Fine Sand- Some Silt- Trac Gravel- Dark Brown- Moist- Loose \(SC/Topsoil)	e – SS1	3 5 7	2				•						
5 -			SS2	6 10 15					◆ 	 		 			4 <u>.</u> 5+ ▽
-		Silty Clay- Trace Sand & Gravel- Occasional Silt Partings- Brown- Very Stiff to Hard (CL)	SS3	9 10 14		4			♦						4 <u>.5</u> + ♡
- 10 - -			SS4	7 11 13					•						4 <u>.5</u> + ▽
- 15 –			SS5	7 9 10					◆						
		Silty Clay- Trace to Some Sand- Trace Gravel- Gray- Very Stiff (CL)	SS6	5 9 13											
-															
25 - - -															
- 30 															
₩ 	GROUND	WATER LEVEL OBSERVATIONS WATER ENCOUNTERED DURING DRILLING	N	lotes:	1. THE INDIO	L L CATED STRAT			APPROXIM	ATE. IN SITU	I, THE TRAN	NSITION B	ETWEEN	MATERIAL	LS MAY

	T L(OCATION: SUPERIOR TOWNSHI TETRA TECH MPS	P, MI		AN	B' Pl	(: GE Roje()/KLW CT NUMI	DATE BER: P	: 7/25/03 G44853		B	ORING HEET:	B9 1	
SVMBOLIC	PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 814	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD TEST RESIS (N-values) 10 2	PENETRATIO STANCES	N 0 50	NATURA DENSITY (pcf) MOISTU ATTERB 0 10	L DRY ′ ■ 100 RE, % ERG ⊢ 20	110 ◆ → LIMITS 30 40	♥ H ◎ V ● Y ● T SHE 0.0	IAND PEN FORVANE JNCONFIN ANE SHE REMOLDE RIAXIAL T AR STRE	LEGEND ETROMET SHEAR TE IED COMP AR TEST D VANE SI TEST ENGTH (P	TER TEST EST RESSION HEAR (SF)	TES ⁻
		Topsoil- Dark Brown Clayey Fine Sand- Some Silt- Brown- Moist- Medium Dense (SC)	SS1	4 5 7								 	 	 	
			SS2	5 12 12								 	 		
		Silty Clay- Trace Sand & Gravel- Brown- Very Stiff to Hard (CL)	SS3	8 10 16					•				 		4
			SS4	7 14 20					•				 		4
		Silty Clay- Trace to Some Sand- Trace Gravel- Gray- Very Stiff to Stiff (CL)	SS5	6 7 9	4				•			 	 		
		END OF BORING AT 20 FEET.	SS6	8 11 14		6			•				 		
_															
-													 	 	
-												 			
GRC GRC UPC		NATER LEVEL OBSERVATIONS WATER ENCOUNTERED DURING DRILLING WATER ENCOUNTERED MPLETION OF DRILLING		lotes:	1. The Indicat Be gradual. 2. groundwa	TED STRATIFICA	TION L	INES ARE A	APPROXIM	IATE. IN SITU	L J, THE TR	ANSITION	BETWEE	⊣ N MATERI	ALS

PROJ	ECT L	OCATION: SUPERIOR TOWNSHI	P, MI		AN	DOILDI	BY: PR	GD/I	KLW D	ATE: 7/	18/03 853		B(Si	ORING HEET:	B10 1	
DEPTH (FEET)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 800	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARI TEST RESI (N-values) - 10	D PENET ISTANCE O	RATION S	N [() M 250 0	IATURAL DF DENSITY pocf) 90 MOISTURE, 9 ATTERBERG 10	RY ■ % ◆ ;	0 IMITS 0 40	∀ H/ X TC U U V V X R V F SHEA 0.0 1.	L AND PENI DRVANE S NCONFINI ANE SHEA EMOLDEE RIAXIAL T AR STRE 0 2	EGEND ETROMET SHEAR TE ED COMPI AR TEST O VANE SH EST NGTH (K .0 3	ER TEST ST RESSION HEAR (SF)	TEST
-		Topsoil- Brown	SS1	3 3 6										 		
5 -			SS2	5 12 17) _ 			•			 		 	 	4.5+ ∀
-		Silty Clay- Trace Sand & Gravel- Occasional to Frequent Silt Partings- Brown- Very Stiff to Hard	SS3	10 16 21			þ		•					 	 	4.5+
- 10 —			SS4	8 17 24					•			 		- 	 	4.5+
- - 15 —			SS5	5 11 14		/ /			•			 			1 1 1 1 1 1 1 1	
-		Silty Clay- Trace to Some Sand- Trace Gravel- Gray- Very Stiff to Hard (CL)		7										 	 	
20 -		END OF BORING AT 20 FEET.	SS6	12 14					•					 	 	
- 25 -														1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	
-														 	 	
35 —																
¥ 0 ¥ 0 U	ROUND ROUND PON CO	WATER LEVEL OBSERVATIONS WATER ENCOUNTERED DURING DRILLING WATER ENCOUNTERED MPLETION OF DRILLING		iotes:	1. THE INDIC/ BE GRADUAL 2. GROUNDW	ATER WA	S NOT EN		ES ARE APPR ERED.	UXIMATE.	IN SITU	INE IRA	UNDI HON	BEIWEEN	N WATERI	ALO MAY

	CT L(DCATION: SUPERIOR TOWNSHI TETRA TECH MPS	P, MI		AN		BY PR	(: GD	/KLW D TNUMBER	ATE: 7/1 : PG448	8/03 853	B	ORING	B11 1	
(רכביו)	SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 806	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STANDARD TEST RESIS (N-values)	PENET STANCE 20 3	TRATION ES 60 40	N 0 50	NATURAL DF DENSITY (pcf) 90 MOISTURE, ' ATTERBERG 0 10	°Y ■ % ◆ ⊢ LI 20 30	MITS 40	AND PEN ORVANE INCONFII ANE SHE EMOLDE RIAXIAL AR STRI	LEGEND NETROMET SHEAR TE NED COMPI AR TEST D VANE SH TEST ENGTH (K 2.0 3	ER TEST ST RESSION HEAR (SF)	TEST
-		Driller reported 10 inches of Sandy Topsoil- Brown	SS1	3								1 		1	4.
			331	7			i i I I I I I I					 		 	7 1
ł			SS2	9 15 20								1 1 1 1		 	4.
			SS3	6 15								1 1 1		 	4.
ł		Silty Clay- Trace to Some Sand- Trace Gravel- Occasional to		7								 		 	
		Frequent Silt Partings- Brown- Hard (CL)	SS4	16 25					•			 		 	4 7
ł												- 		 	
			SS5	7 13								 		 	
ł				18								 	 	 	
		Silty Clay- Trace to Some Sand-				/						- 		 	
ľ		Trace Gravel- Gray- Very Stiff (CL)	SS6	5 9 14		6	 		•			 			
		END OF BORING AT 20 FEET.										 		 	
							 <u> </u> 		 			 	 	 	
												- 		 	
-															
GF GF UF		WATER ENCOUNTERED DURING DRILLING WATER ENCOUNTERED MPLETION OF DRILLING		ioles:	BE GRADUAL. 2. GROUNDW	ATER WA	AS NOT E	NCOUN	ITERED.						, 120 N

PROJECT	LOCATION: SUPERIOR TOWNSH	IP, MI					B' Pl	r: GI Roje	D/KLW CT NUN	DA IBER:	TE: 7 PG44	/18/03 1853			BORING SHEET:	B12 1	
DEPTH (FEET) SYMBOLIC PROFILE	PROFILE DESCRIPTION EASTING: NORTHING: GROUND SURFACE ELEVATION= 815	SAMPLE TYPE/NUMBER INTERVAL	BLOWS PER SIX INCHES	STAN TEST (N-val	DARD RESIS ues)		RATIO S 0 4	N 0 50	NATUR DENSIT (pcf) MOISTI ATTER 0 1(AL DRY ⁻ Y ■) 10 URE, % BERG) 2(0 11 ◆ □ 3	10 LIMITS 0 40		HAND PE TORVAN UNCONF VANE SH REMOLD TRIAXIAL EAR STF 1.0	LEGEND INETROME E SHEAR TI INED COMP EAR TEST ED VANE S . TEST RENGTH (H 2.0	TER TEST EST RESSION HEAR (SF)	TEST 4.0 5.0
	Topsoil- Brown	SS1	5 7 11							•		 					4.5+
		SS2	7 11 18		 					•							4.5+
5-	Silty Clay- Trace to Some Sand- Trace Gravel- Occasional Sand Seams Brown- Hard to Very Stiff (CL)	SS3	10 12 16		 					•							4.5+
¥ 10-		SS4	10 17 28		, , , , , ,			\sum_{i}		•		 					
15 -	Silty Clay- Trace to Some Sand- Trace Gravel- Gray- Stiff to Very Stiff (CL)	SS5	5 9 16			4				•							
20	END OF BORING AT 20 FEET.	SS6	7 11 20				5			•					▽		
25 -					- 							 					
30 -					 							 					
35 -					 												
Ţ GROUN 葉 GROUN UPON (L WATER LEVEL OBSERVATIONS IDWATER ENCOUNTERED DURING DRILLING IDWATER ENCOUNTERED COMPLETION OF DRILLING	N	otes:	I 1. THE I BE GRAI	INDICAT DUAL.	ED STR	ATIFICA	TION L	I INES ARE	APPRO	XIMATE	. IN SITU	I, THE T	RANSITIC	N BETWEE	⊣ N MATERI	LALS MAY

APPENDIX C

RELEVANT DATA FROM PREVIOUS GEOTECHNICAL EVALUATION REPORT (SME PROJECT NO. 044853.00) DATED MARCH 4, 2004 – BORING LOCATION DIAGRAM AND BORING LOGS (B101-B109)

soil and materials engineers, inc. A/E: ARCADIS HATCI MICHIGAN R & D CENTER PROJECT NAME: DATE: 1/16/04 **BORING B101** PROJECT LOCATION: SUPERIOR TOWNSHIP, MICHIGAN BY: AMF/EOL SHEET: 1 PROJECT NUMBER: PG46260 CLIENT: ARCADIS LEGEND PROFILE HAND PENETROMETER TEST SAMPLE TYPE/NUMBER INTERVAL ∇ NATURAL DRY DESCRIPTION TORVANE SHEAR TEST \boxtimes DENSITY --UNCONFINED COMPRESSION TEST 0 STANDARD PENETRATION (pcf) VANE SHEAR TEST TEST RESISTANCES REMOLDED VANE SHEAR $\overline{\times}$ SYMBOLIC PROFILE BLOWS PER SIX INCHES (N-values) - O 90 100 110 TRIAXIAL TEST 0 MOISTURE. % -٠ DEPTH (FEET) GROUND SURFACE SHEAR STRENGTH (KSF) ATTERBERG H H LIMITS ELEVATION= 792 40 0.0 2.0 4_0 40 50 20 1.0 3.0 5.0 10 20 30 10 30 n 0 Clayey Fine Sand- Trace Gravel-SS1 Brown- Moist- Very Loose (SC) 4 3 ٧ SS2 2 3 5 Silty Fine Sand- Trace Clay & Gravel- Brown- Moist to Wet-5 Loose (SM) SS3 5 4 SS4 9 6 10 3 SS5 8 12 Fine Sand- Some Silt- Trace Clay 15 & Gravel- Gray- Wet- Medium Dense (SM) 6 SS6 9 15 20 4.5+ Silty Clay- Some Sand- Trace Gravel- Gray- Hard (CL) END OF BORING AT 23.92 SS7 50/5* 50/5" ٠ 25 FEET. 30 35 Notes: 1. THE INDICATED STRATIFICATION LINES ARE APPROXIMATE. IN SITU, THE TRANSITION BETWEEN MATERIALS MAY WATER LEVEL OBSERVATIONS 록 GROUNDWATER ENCOUNTERED DURING DRILLING ₩ GROUNDWATER ENCOUNTERED UPON COMPLETION OF DRILLING BE GRADUAL 2. DRILLER NOTED AUGER REFUSAL AT 25 FEET BELOW THE GROUND SURFACE. WATER LEVEL DURING DRILLING: 4 WATER LEVEL HOURS AFTER COMPLETION: DRILL METHOD: Solid-stem Augers DRILLER: JB

RIG NO.: 26

soil and materials engineers, inc.

T:	ARCADIS	-	-		PROJ	ECT NUMBER:	PG46260	SHEE	.T: 1
	PROFILE DESCRIPTION	PE/NUMBER		STANDARD P	ENETRATION ANCES	NATURAL DRY DENSITY -		LEGE V HAND PENETRO TORVANE SHEAA UNCONFINED CO VANE SHEAR TE XANE SHEAR TE REMOLDED VAN	ND METER TEST IR TEST OMPRESSION TEST EST NE SHEAR
SYMBOLIC	GROUND SURFACE ELEVATION= 786	SAMPLE TYF NTERVAL	BLOWS PER	(N-values)	30 40 5	MOISTURE, %	- • - I LIMITS 30 40		TH (KSF) 3.0 4.0 5.0
7	Driller reported 12 inches of Sandy Clay- Trace Silt- Brown		1						
	Silty Fine Sand- Trace Clay & Gravel- Brown- Moist to Wet- Very Loose to Loose (SM)	SS1 SS2	2 2 3 4 4	9					
		SS3	6 7 6	þ					
	Silty Fine Sand- Trace Clay & Gravel- Occasional Silt Layers & Seams- Gray- Medium Dense (SM)	SS4	4 5 5	0					_
		SS5	3 4 6				•		
	Silty Clay- Trace to Some Sand- Trace Gravel- Occasional Silty Sand Seams & Partings- Gray- Very Stiff to Hard (CL)	SS6	8 12 20		× ×	*			4.5+
	END OF BORING AT 23.67 FEET.	- SS7∎	100/2		O10072" -	• •			4,5+
ROUN	WATER LEVEL OBSERVATIONS DWATER ENCOUNTERED DURING DRILLING DWATER ENCOUNTERED	-	Notes:	1. THE INDICATI BE GRADUAL. 2. DRILLER NOT	ED STRATIFICATION	LINES ARE APPRO	XIMATE. IN SITU W THE GROUND	, THE TRANSITION BETA SURFACE.	WEEN MATERIALS MAY

RIG NO.: 26

soil and materials engineers, inc.

RIG NO.: 26

BACKFILL METHOD: Auger Cuttings

BACKFILL METHOD: Auger Cuttings

WATER LEVEL UPON COMPLETION: 25

BACKFILL METHOD: Auger Cuttings

soil and materials engineers, inc. A/E: ARCADIS HATCI MICHIGAN R & D CENTER **PROJECT NAME:** DATE: 1/19/04 **BORING B106** PROJECT LOCATION: SUPERIOR TOWNSHIP, MICHIGAN BY: AMF/EOL PROJECT NUMBER: PG46260 SHEET: 1 CLIENT: ARCADIS LEGEND PROFILE HAND PENETROMETER TEST SAMPLE TYPE/NUMBER INTERVAL ∇ NATURAL DRY DESCRIPTION TORVANE SHEAR TEST \boxtimes DENSITY -UNCONFINED COMPRESSION TEST \cap STANDARD PENETRATION (pcf) VANE SHEAR TEST TEST RESISTANCES REMOLDED VANE SHEAR $\overline{\times}$ BLOWS PER SIX INCHES SYMBOLIC PROFILE 110 90 100 TRIAXIAL TEST (N-values) -- O <u></u> MOISTURE, % -٠ DEPTH (FEET) SHEAR STRENGTH (KSF) GROUND SURFACE ATTERBERG H - LIMITS ELEVATION= 802 2.0 4.0 40 50 20 40 0.0 1.0 3.0 5.0 30 0 30 10 20 10 Driller reported 12 inches of 0 Topsoil 2 SS1 3 ∇ 4 ¥. 4.5+ SS2 8 12 5 14 4.5+ Silty Clay- Trace to Some Sand-SS3 20 Trace Gravel- Occasional Silty 25 Sand Seams & Partings- Brown-Very Stiff to Hard (CL) 9 4.5+ SS4 17 21 10 8 SS5 10 ∇ ٠ 12 15 Silty Clay- Trace to Some Sand-Trace Gravel- Gray- Very Stiff to 5 4.5+ SS6 9 Hard (CL) 13 20 1 17 Silt- Trace Clay & Sand- Gray-SS7 30 O62 -Wet- Very Dense (ML) 32 25 Fine Sand- Trace Silt & Gravel-Gray-Wet-Medium Dense (SP) 6 SS8 5 11 O 30 END OF BORING AT 30 FEET. 35 Notes: 1. THE INDICATED STRATIFICATION LINES ARE APPROXIMATE. IN SITU, THE TRANSITION BETWEEN MATERIALS MAY WATER LEVEL OBSERVATIONS BE GRADUAL SROUNDWATER ENCOUNTERED DURING DRILLING GROUNDWATER ENCOUNTERED UPON COMPLETION OF DRILLING 묯 WATER LEVEL DURING DRILLING: 3 WATER LEVEL HOURS AFTER COMPLETION: DRILL METHOD: Solid-stem Augers DRILLER: JB

RIG NO.: 26

BACKFILL METHOD: Auger Cuttings

WATER LEVEL UPON COMPLETION: 20

RIG NO.: 167

BACKFILL METHOD: Auger Cuttings

CAVE OF BOREHOLE AT

RIG NO.: 167

BACKFILL METHOD: Auger Cuttings

WATER LEVEL UPON COMPLETION: None CAVE OF BOREHOLE AT

RIG NO.: 167

BACKFILL METHOD: Auger Cuttings

WATER LEVEL UPON COMPLETION: 28

CAVE OF BOREHOLE AT

APPENDIX D

IMPORTANT INFORMATION ABOUT THIS GEOTECHNICAL ENGINEERING REPORT GENERAL COMMENTS LABORATORY TESTING PROCEDURES

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you – assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and refer to the report in full.*

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept* responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform constructionphase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note* conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures.* If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will <u>not</u> of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration* by including building-envelope or mold specialists on the design team. *Geotechnical engineers are <u>not</u> building-envelope or mold specialists.*

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

GENERAL COMMENTS

BASIS OF GEOTECHNICAL REPORT

This report has been prepared in accordance with generally accepted geotechnical engineering practices to assist in the design and/or evaluation of this project. If the project plans, design criteria, and other project information referenced in this report and utilized by SME to prepare our recommendations are changed, the conclusions and recommendations contained in this report are not considered valid unless the changes are reviewed, and the conclusions and recommendations of this report are modified or approved in writing by our office.

The discussions and recommendations submitted in this report are based on the available project information, described in this report, and the geotechnical data obtained from the field exploration at the locations indicated in the report. Variations in the soil and groundwater conditions commonly occur between or away from sampling locations. The nature and extent of the variations may not become evident until the time of construction. If significant variations are observed during construction, SME should be contacted to reevaluate the recommendations of this report. SME should be retained to continue our services through construction to observe and evaluate the actual subsurface conditions relative to the recommendations made in this report.

In the process of obtaining and testing samples and preparing this report, procedures are followed that represent reasonable and accepted practice in the field of soil and foundation engineering. Specifically, field logs are prepared during the field exploration that describe field occurrences, sampling locations, and other information. Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory and differences may exist between the field logs and the report logs. The engineer preparing the report reviews the field logs, laboratory classifications, and test data and then prepares the report logs. Our recommendations are based on the contents of the report logs and the information contained therein.

REVIEW OF DESIGN DETAILS, PLANS, AND SPECIFICATIONS

SME should be retained to review the design details, project plans, and specifications to verify those documents are consistent with the recommendations contained in this report.

REVIEW OF REPORT INFORMATION WITH PROJECT TEAM

Implementation of our recommendations may affect the design, construction, and performance of the proposed improvements, along with the potential inherent risks involved with the proposed construction. The client and key members of the design team, including SME, should discuss the issues covered in this report so that the issues are understood and applied in a manner consistent with the owner's budget, tolerance of risk, and expectations for performance and maintenance.

FIELD VERIFICATION OF GEOTECHNICAL CONDITIONS

SME should be retained to verify the recommendations of this report are properly implemented during construction. This may avoid misinterpretation of our recommendations by other parties and will allow us to review and modify our recommendations if variations in the site subsurface conditions are encountered.

PROJECT INFORMATION FOR CONTRACTOR

This report and any future addenda or other reports regarding this site should be made available to prospective contractors prior to submitting their proposals for their information only and to supply them with facts relative to the subsurface evaluation and laboratory test results. If the selected contractor encounters subsurface conditions during construction, which differ from those presented in this report, the contractor should promptly describe the nature and extent of the differing conditions in writing and SME should be notified so that we can verify those conditions. The construction contract should include provisions for dealing with differing conditions and contingency funds should be reserved for potential problems during earthwork and foundation construction. We would be pleased to assist you in developing the contract provisions based on our experience.

The contractor should be prepared to handle environmental conditions encountered at this site, which may affect the excavation, removal, or disposal of soil; dewatering of excavations; and health and safety of workers. Any Environmental Assessment reports prepared for this site should be made available for review by bidders and the successful contractor.

THIRD PARTY RELIANCE/REUSE OF THIS REPORT

This report has been prepared solely for the use of our Client for the project specifically described in this report. This report cannot be relied upon by other parties not involved in the project, unless specifically allowed by SME in writing. SME also is not responsible for the interpretation by other parties of the geotechnical data and the recommendations provided herein.

LABORATORY TESTING PROCEDURES

VISUAL ENGINEERING CLASSIFICATION

Visual classification was performed on recovered samples. The appended General Notes and Unified Soil Classification System (USCS) sheets include a brief summary of the general method used visually classify the soil and assign an appropriate USCS group symbol. The estimated group symbol, according to the USCS, is shown in parentheses following the textural description of the various strata on the boring logs appended to this report. The soil descriptions developed from visual classifications are sometimes modified to reflect the results of laboratory testing.

MOISTURE CONTENT

Moisture content tests were performed by weighing samples from the field at their in-situ moisture condition. These samples were then dried at a constant temperature (approximately 110° C) overnight in an oven. After drying, the samples were weighed to determine the dry weight of the sample and the weight of the water that was expelled during drying. The moisture content of the specimen is expressed as a percent and is the weight of the water compared to the dry weight of the specimen.

HAND PENETROMETER TESTS

In the hand penetrometer test, the unconfined compressive strength of a cohesive soil sample is estimated by measuring the resistance of the sample to the penetration of a small calibrated, spring-loaded cylinder. The maximum capacity of the penetrometer is 4.5 tons per square-foot (tsf). Theoretically, the undrained shear strength of the cohesive sample is one-half the unconfined compressive strength. The undrained shear strength (based on the hand penetrometer test) presented on the boring logs is reported in units of kips per square-foot (ksf).

TORVANE SHEAR TESTS

In the Torvane test, the shear strength of a low strength, cohesive soil sample is estimated by measuring the resistance of the sample to a torque applied through vanes inserted into the sample. The undrained shear strength of the samples is measured from the maximum torque required to shear the sample and is reported in units of kips per square-foot (ksf).

LOSS-ON-IGNITION (ORGANIC CONTENT) TESTS

Loss-on-ignition (LOI) tests are conducted by first weighing the sample and then heating the sample to dry the moisture from the sample (in the same manner as determining the moisture content of the soil). The sample is then re-weighed to determine the dry weight and then heated for 4 hours in a muffle furnace at a high temperature (approximately 440° C). After cooling, the sample is re-weighed to calculate the amount of ash remaining, which in turn is used to determine the amount of organic matter burned from the original dry sample. The organic matter content of the specimen is expressed as a percent compared to the dry weight of the sample.

ATTERBERG LIMITS TESTS

Atterberg limits tests consist of two components. The plastic limit of a cohesive sample is determined by rolling the sample into a thread and the plastic limit is the moisture content where a 1/8-inch thread begins to crumble. The liquid limit is determined by placing a ½-inch thick soil pat into the liquid limits cup and using a grooving tool to divide the soil pat in half. The cup is then tapped on the base of the liquid limits device using a crank handle. The number of drops of the cup to close the gap formed by the grooving tool ½ inch is recorded along with the corresponding moisture content of the sample. This procedure is repeated several times at different moisture contents and a graph of moisture content and the corresponding number of blows is plotted. The liquid limit is defined as the moisture content at a nominal 25 drops of the cup. From this test, the plasticity index can be determined by subtracting the plastic limit from the liquid limit.

Passionate People Building and Revitalizing our World

 IBI GROUP

 25200 Telegraph Road – Suite 300

 Southfield MI 48033 USA

 Tel: 248 936 8000 fax: 248 936 8111

 ibigroup.com

Appendix B

Boundary Survey

02 N \bigcirc

G Z

ENGINEERI

STON

LIVING

UP

ent GR(00 ITE

CI, CI, 2520 SU 27

Ш

>

ſ

SU

v ,

 \succ

AR

OUND

Μ

0

N

of 1

⋝

LEGAL DESCRIP'TION PARCEL 1 (per Quit Claim Deed recorded in Liber 4621, Page 837)

Commencing at the Northeast corner of Section 32, Town 2 South, Range 7 East, Superior Township, Washtenaw County, Michigan; thence South 02°12'36" East 2178.18 feet along the East line of said Section and the centerline of LeForge Road to the point of beginning; thence continuing South 02°12'36" East 369.59 feet along said East line and said centerline; thence South 87°33'10" West 1803.00 feet; thence South 02°12'36" East 108.00 feet to a point on the East-West 1/4 line of said Section; thence South 87°33'10" West 504.33 feet along said East-West 1/4 line to a point on the West line of the East 1/2 of the West 1/2 of the West 1/2 of the Northeast 1/4 of said Section; thence North 02°00'37" West 2636.05 feet along said West line to a point on the North line of said Section and the centerline of Geddes Road; thence North 87'03'35" East 1098.21 feet along said North line and said centerline; thence South 02°12'36" East 2178.18 feet; thence North 87°03'35" East 1200.10 feet to the point of beginning. Being a part of the East 1/2 of the Northeast 1/4 and a part of the East 3/4 of the West 1/2 of the Northeast 1/4 of Section 32, Town 2 South, Range 7 East, Superior Township, Washtenaw County, Michigan.

LEGAL DESCRIPTION PARCEL II-A (per Warranty Deed recorded in Liber 4567, Page 710)

Commencing at the Northeast corner of Section 32, Town 2 South, Range 7 East, Superior Township, Washtenaw County, Michigan; thence South 02°12'36" East 2178.18 feet along the East line of said Section and the centerline of LeForge Road to the point of beginning; thence continuing South 02°12'36" East 369.59 feet along said East line and said centerline; thence South 87°33'10" West 1803.00 feet; thence South 02°12'36" East 108.00 feet to a point on the East and West 1/4 line of said Section; thence South 87.33'10" West 504.33 feet along said East and West 1/4 line to a point on the West line of the East 1/2 of the West 1/2 of the west 1/2 of the Northeast 1/4 of said Section; thence North 02°00'31" West 2636.05 feet along said West line to a point on the North line of said Section and the centerline of Geddes Road; thence North 87°03'35" East 1098.21 feet along said North line and said centerline; thence South 02°12'36" East 2178.18 feet; thence North 87°03'35" East 1200.10 feet to the point of beginning. Being a part of the East 1/2 of the Northeast 1/4 and a part of the East 3/4 of the West 1/2 of the Northeast 1/4 of Section 32, Town 2 South, Range 7 East, Superior Township, Washtenaw County, Michigan.

OVERALL LEGAL DESCRIPTION (As Surveyed)

Part of the Northeast 1/4 of Section 32, Town 2 South, Range 7 East, Superior Township, Washtenaw County, Michigan, more particularly described as follows: Commencing at the Northeast corner of said Section 32; thence along the East line of said Section 32 and the Centerline of LeForge Road (variable width public right of way), S 02°12'36" E, 2178.18 feet to the POINT OF BEGINNING of the parcel to be described; thence continuing along the East line of said Section 32 and the centerline of said LeForge Road, S 02°12'36" E, 369.59 feet; thence S 87°33'10" W, 1803.00 feet; thence S 02°12'36" E, 108.00 feet to a point on the East-West 1/4 line of said Section 32; thence along East-West 1/4 line of said Section 32, S 87°33'10" W, 504.33 feet to a found iron pipe with cap #15411; thence along the West line of the East 1/2 of the West 1/2 of the West 1/2 of the Northeast 1/4 of said Section 32, N 02°00'37" W, 2636.05 feet to a point on the the North line of said section 32 and the centerline of Geddes Road (variable width public right of way); thence along the North line said Section 32 and the centerline of said Geddes Road, N 87°03'35" E, 1098.21 feet; thence S 02°12'36" E, 60.00 feet to a point on the Southerly right of way line of said Geddes Road; thence along the Southerly right of way line of said Geddes Road, N 87°03'35" E, 1140.10 feet to a point on the Westerly right of way line of said Leforge Road; thence along the Westerly right of way line of said Leforge Road, S 02°12'36" E, 2118.18 feet; thence N 87°03'35" E, 60.00 feet to the Point of Beginning, containing 130.83 acres, more or less. Subject to the rights of the public over Geddes Road and LeForge Road. Also subject to any other easements or restrictions of record.

 IBI GROUP

 25200 Telegraph Road – Suite 300

 Southfield MI 48033 USA

 Tel: 248 936 8000 fax: 248 936 8111

 ibigroup.com

Appendix C

Stream and Wetland Delineation Report

Wetland and Stream Delineation Report

IBI Group HMA STIL Facility Project

Wetland and Stream Delineation Report

October 2021 ECT No. 210731

IBI Group 25200 Telegraph Rd. Ste. 300 Southfield, MI 48033

BUSINESS CONFIDENTIAL NOT FOR DISTRIBUTION

IBI Group HMA STIL Facility Project Wetland and Stream Delineation Report

Document Review

The dual signatory process is an integral part of Environmental Consulting & Technology, Inc.'s (ECT's) Document Review Policy No. 9.03. All ECT documents undergo technical/peer review before dispatching these documents to any outside entity.

This document has been authored and reviewed by the following employees:

<u>Heather Darrow</u> Author

<u>Alyssa Dietz-Oergel</u> Peer Review

alypea (Hig- Dergel

Signature

Signature

<u>10/27/2021</u> Date <u>10/27/2021</u> Date

Table of Contents

Executive Summary1							
1.0	Introduction and Methodology2						
2.0	Available Mapping and Data4						
	2.1	Aerial Imagery Review4					
	2.2	U.S. Geographical Survey Topographic Map4					
	2.3 Invei	National Wetland Inventory & National Hydrography Dataset Map and Michigan Wetland ntory Map4					
	2.4	NRCS Soils Map5					
	2.5	FEMA Flood Zone Map6					
3.0	Resu	ılts7					
	3.1	Wetlands7					
	3.2	Streams9					
	3.3	Floodplains10					
	3.4	Upland Conditions					
4.0	Pern	nitting Consideration					
	4.1	Federal Considerations11					
	4.2	State Considerations11					
	4.3	County Considerations13					
5.0	Cone	clusions					
6.0	0 References						
Appendices							

Figure 1 Site Location	
Figure 2 USGS Topographic	
Figure 3 NWI and NHD Features	
Figure 4 MWI Features	
Figure 5 NRCS Soil	
Figure 6 FEMA Flood Zone	
Figure 7 Wetland and Stream Delineation	n

Appendix B USACE Wetland Determination Data Forms

Appendix C Photographic Log

List of Tables

Table 2-1.	USDA-NRCS Soil Map Units	5
Tabl 3-1.	Wetland Summary Data: Wetland Type and Potential Regulatory Status	7
Table 3-2.	Stream Summary Data1	0

IBI Group HMA STIL Facility Project

List of Acronyms and Abbreviations

CWA	Clean Water Act
EGLE	Department of Environment, Great Lakes, and Energy
ECT	Environmental Consulting & Technology, Inc.
EPA	United States Environmental Protection Agency
FAC	Facultative
FACU	Facultative Upland
FACW	Facultative Wetland
FEMA	Federal Emergency Management Agency
FIRM	Federal Insurance Rate Map
GPS	Global Positioning System
HMA	Hyundai Motor America
HUC	Hydrologic Unit Code
MIRIS	Michigan Resource Inventory System
MWI	Michigan Wetlands Inventory
NHD	National Hydrological Dataset
NRCS	Natural Resources Conservation Service
NREPA	Natural Resources and Environmental Protection Act
NWI	National Wetlands Inventory
OBL	Obligate
OHWM	Ordinary High-Water Mark
PFO	Palustrine Forested Wetland
Project	HMA STIL Facility
SFHA	Special Flood Hazard Area
STIL	Safety Test Investigation Laboratory
UPL	Obligate Upland
USACE	United States Army Corps of Engineers
USDA	United States Department of Agriculture
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
WOTUS	Waters of the United States

Executive Summary

IBI Group contracted Environmental Consulting & Technology, Inc. (ECT) to perform a wetland and stream delineation for the Hyundai Motor America (HMA) Safety Test Investigation Laboratory (STIL) Facility Project (Project) located, on approximately 46-acres of undeveloped land (Project Area) east of Ann Arbor, in Superior Charter Township (T2S R7E), Washtenaw County, Michigan (**Appendix A: Figure 1**).

The proposed Project is located in the Ford Lake-Huron River (Hydrologic Unit Code [HUC] 040900050403) watershed. On October 6 and 22, 2021, ECT conducted a field reconnaissance of the Project Area to identify, delineate, characterize wetland and stream features, and to determine their likely regulatory status.

ECT evaluated the Project Area for on-site water resources to determine the regulatory status of these features based on the Natural Resources and Environmental Protection Act (NREPA), 1994, PA 451, as amended (Act 451), currently in effect in Michigan. ECT identified six (6) wetlands within the Project Area (wetlands W1A, W2A, W3A, W4A, W5A, and W6A), and two (2) streams: stream S1A (Snidecar Drain) and S2A (unnamed). Based on current provisions under Part 303, Wetlands Protection, and conditions observed during the site visit and delineation, ECT believes that four (4) of these wetlands are likely regulated due to their proximity to regulated streams and/or their size. Wetlands W1A, W2A, W3A, W4A, and W6A are within 500 feet of a stream (S1A [Snidecar Drain] and unnamed offside) and therefore are likely regulated. Wetland W5A is less than five (5) acres in size; is not contiguous to an inland lake, pond, or stream; and, is not located within 500 feet of an inland lake, pond, or stream.

The identification of wetlands herein is based on the condition of the Project Area at the time of the investigation. All wetland boundaries, and likely jurisdictional statuses, are considered preliminary in that the Michigan Department of Environment, Great Lakes, and Energy (EGLE) has the authority to confirm, deny, or change wetland and stream determinations through the permit review process.

1.0 Introduction and Methodology

IBI Group contracted Environmental Consulting & Technology, Inc. (ECT) to perform a wetland and stream delineation to support the Hyundai Motor America (HMA) Safety Test Investigation Laboratory (STIL) Project (Project). The Project is located on approximately 46-acres of undeveloped land (Project Area) in Superior Charter Township (T2S R7E), Washtenaw County, approximately 2.3 miles east of the City of Ann Arbor, Michigan (**Appendix A: Figure 1**). The Project is within the Ford Lake-Huron River (Hydrologic Unit Code [HUC] 040900050403) watershed, which is part of the larger Huron River watershed (HUC 04090005).

On October 6 and 22, 2021, ECT conducted a field reconnaissance of the Project Area to identify, delineate, and characterize wetlands, assess water features and streams, and determine the likely regulatory status of the identified water resources. The Project Area is dominated by agricultural land, upland forest, maintained/mowed areas, and emergent wetlands. The Project Area is surrounded by forested areas on three (3) sides (northwest, south, and west), manufacturing/commercial development to the north, and agricultural land to the east. Snidecar Drain (not a regulated county drain) flows along the northwestern boundary of the Project Area.

Wetlands within the Project Area were delineated following the *1987 U.S. Army Corps of Engineers Wetland Delineation Manual* (Environmental Laboratory 1987) and the *Regional Supplement to the Army Corps of Engineers Wetland Delineation Manual: Midwest* (USACE 2012) guidelines. The presence of wetlands is determined based on three (3) parameters: the presence of hydric vegetation (hydrophytes), hydric soils, and wetland hydrology. Wetland boundaries were mapped using a submeter Trimble® R1 global positioning system (GPS) unit. Wetland data points and corresponding upland points were also mapped with the same GPS unit. USACE regional determination forms were completed for each wetland and its corresponding upland point (See **Appendix B: USACE Wetland Determination Data Forms**).

Plant species were identified by flowers, leaves, bark, twigs, stems, reproductive structures, and/or persistent remains from the preceding growing season. The wetland indicator status for vegetation noted during the evaluation was obtained from the USACE Midwest Region 2018 Regional Wetland Plant List (USACE 2018). Soils were evaluated by digging test pits sufficient to document hydric

indicators, up to 24 inches deep. Soil conditions were evaluated using criteria established by the U.S. Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) *Field Indicators of Hydric Soils in the United States* (USDA-NRCS 2018), and soil colors were evaluated using a Munsell® color chart. Hydrology was evaluated through direct observation of primary indicators (e.g., standing water and/or saturated soil) and indirectly through observation of secondary hydrology indications.

The presence of morphological features such as a defined bed, banks, the presence of ordinary highwater mark (OHWM), and evidence of water flow was observed indicating the presence of streams within the Project Area.

2.0 Available Mapping and Data

Prior to the fieldwork, ECT conducted a preliminary desktop site assessment of existing information and imagery, including aerial photographs, United States Geological Service (USGS) topographic maps, National Wetland Inventory (NWI) maps, Michigan Wetland Inventory (MWI) maps, soil survey maps, and Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs). The results of this desktop review were used to focus field efforts on protected natural resources that are likely to occur within the Project Area.

2.1 <u>Aerial Imagery Review</u>

Aerial imagery of the Project Area was reviewed before the field reconnaissance to identify past and current land use and potential water resources. Per the aerial review, the Project Area likely consists primarily of agricultural land, upland forest, maintained/mowed areas, emergent wetlands, and one (1) stream. The area immediately surrounding the Project Area is industrially developed (manufacturing laboratory) to the north, forest to the south, west, and northwest, and Laforge Road and agricultural land to the east. The aerial imagery analysis determined that land use within the Project Area and the surrounding area has remained mostly unchanged throughout the previous 16 years.

2.2 U.S. Geographical Survey Topographic Map

The U.S. Geological Survey (USGS) Ann Arbor East, Michigan 7.5-minute quadrangle maps (USGS 2019) depict the elevation within the Project Area ranges from 780 to 825 feet above mean sea level (USGS 2021b); **Appendix A: Figure 2**). One (1) intermittent stream is identified on the USGS map, flowing near the northwestern Project Area.

2.3 <u>National Wetland Inventory, National Hydrography Dataset Map, and</u> <u>Michigan Wetland Inventory Map</u>

The NWI, MWI, and the NHD were reviewed to determine the likely presence, location, size, and type of water resources that may be within the Project Area (USFWS 2021; USGS 2021a; EGLE 2021). The United States Fish & Wildlife Service (USFWS) generates NWI maps through high-altitude imagery. MWI maps are produced by overlaying data from the NWI, land cover as mapped by the Michigan

Department of Natural Resources' Michigan Resource Inventory System (MIRIS), and soils as mapped by USDA-NRCS. These maps were used for preliminary analysis only as these maps may not accurately depict the extent or existence of wetlands in a specific area, nor do they always correctly identify the types of wetlands present. On-site field mapping is required to determine the actual presence and types of wetlands within the Project Area.

The NWI database identified one (1) riverine wetland located in the northwest corner of the Project Area (USFWS 2021; **Appendix A: Figure 3**).

The NHD mapped one (1) stream within the Project Area. Snidecar Drain is mapped along the northwest boundary of the Project Area and flows southwest (USGS 2021a; **Appendix A: Figure 3**).

Additionally, MWI maps were reviewed and hydric soils are mapped along the northern quarter of the Project Area, including along Snidecar Drain in the northwestern boundary of the Project Area, consistent with onsite wetland delineation findings (EGLE 2021; **Appendix A: Figure 4**).

2.4 NRCS Soils Map

ECT reviewed the USDA-NRCS soil data for hydric soils that may be present within the Project Area. Hydric soils form under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part of the soil (USDA-NRCS 2018). A total of five (5) soil map types are mapped within the Project Area (**Appendix A: Figure 5**). Soils within the Project Area were rated from predominantly hydric to nonhydric by the USDA-NRCS (**Table 2-1**).

Table 2-1. USDA-NRCS Soil Map Units

Soils Unit Name	Symbol	Hydric	Acreage in Project Area	% of Project Area
Kendallville loam, 2 to 6 percent slopes	KeB	Nonhydric	15.50	33.40%
St. Clair clay loam, 6 to 12 percent slopes	StC	Nonhydric	10.20	22.00%
Hoytville silty clay loam	Но	Predominantly Hydric	8.90	19.20%
Fox sandy loam, till plain, 2 to 6 percent slopes	FoB	Predominantly Nonhydric	6.70	14.50%
Nappanee silty clay loam, 2 to 6percent slopes	NaB	Predominantly Nonhydric	5.00	10.90%
		Total	46.30	100.00%

BUSINESS CONFIDENTIAL NOT FOR DISTRIBUTION

Source: USDA-NRCS, 2021.

2.5 FEMA Flood Zone Map

Flood hazard areas identified on the FIRMS are identified as a Special Flood Hazard Area (SFHA). SFHA is defined as the area that will be inundated by the flood event having a 1-percent chance of being equaled or exceeded in any given year. The 1-percent annual chance of flood is also referred to as the base flood or the 100-year flood.

Moderate flood hazard areas, labeled Zone B or Zone X (shaded) are also shown on the FIRM and are the areas between the limits of the base flood and the 0.2-percent-annual-chance (or 500-year) flood. The areas of minimal flood hazard, which are the areas outside the SFHA and higher than the elevation of the 0.2-percent-annual-chance flood, are labeled Zone C or Zone X (unshaded).

A review of the FIRMs indicated no regulated floodplains are mapped within the Project Area (FEMA 2021; **Appendix A: Figure 6**).

3.0 Results

3.1 <u>Wetlands</u>

During the site reconnaissance, six (6) wetlands (wetlands W1A, W2A, W3A, W4A, W5A, and W6A) were identified within the Project Area and are shown on the Wetland Delineation Map (**Appendix A: Figure 7**). USACE Midwest Region wetland data sheets are provided in **Appendix B**. Wetlands identified had a predominance of hydrophytic vegetation, hydric soils, and observed hydrological characteristics.

Sufficient reducing characteristics were observed within the upper 10 inches of soils, per guidelines set forth by the USDA-NRCS Field Indicators of Hydric Soils in the United States (USDA-NRCS 2018). All the wetlands met the conditions for the depleted matrix (F3) hydric soil indicator. Wetlands W1A, W3A, W4A, and W5A soils were light gray/brown to dark brown clay loam. Wetland W2A soil was light brown/brown clay. Other observed hydric soil indicators included depleted below dark surface (A11), and loamy mucky mineral (F1).

Hydrology indicators found within the identified wetlands included surface water (A1), high water table (A2), saturation (A3), drift deposits (B3), algal mat or crust (B4), drainage patterns (B10), saturation visible on aerial imagery (C9), geomorphic position (D2), and FAC-neutral test (D5).

Typical vegetative conditions noted in wetlands within the Project Area are described in the following paragraphs. The scientific names and wetland indicator status of vegetation (obligate wetland, OBL; facultative wetland, FACW; facultative, FAC; facultative upland, FACU; and obligate upland, UPL) noted during the delineation follow the common name the first time each plant species is referenced. **Appendix C** provides photographs depicting conditions at the time of the site investigation. **Table 3-1** provides details on the identified wetlands within the Project Area.

Wetland ID	Lat/Long	Wetland Type ¹	Regulatory Status ²	Hydrologic Connectivity ³	Acres
W1A	42.2692109, -83.6307970	PEM	Regulated	Contiguous	0.20
W2A	42.2704990, -83.6264494	PEM	Regulated	Contiguous	0.08
W3A	42.2706055, -83.6268375	PEM	Regulated	Contiguous	0.04

Tabl 3-1. Wetland Summary Data: Wetland Type and Potential Regulatory Status

BUSINESS CONFIDENTIAL NOT FOR DISTRIBUTION

Wetland ID	Lat/Long	Wetland Type ¹	Regulatory Status ²	Hydrologic Connectivity ³	Acres		
W4A	42.2700699, -83.6261552	PSS	Regulated	Contiguous	0.27		
W5A	42.2692637, -83.6236640	PEM	Non - Regulated	More than 500 feet from a stream Less than 5 acres	0.06		
W6A	42.2678443, -83.6232091	PFO	Regulated	Contiguous	0.03		
Scrub/Shrub Total							
Emergent Total							
Forested Total							
Total							

Source: ECT, 2021.

¹ Cowardin Classification: PEM = Palustrine Emergent Wetland; PSS = Palustrine Scrub-Shrub Wetland

² Final jurisdictional determination is made by EGLE during the permitting process.

³ Contiguous = wetland is within 500 feet of, and/or has a direct connection to a regulating feature (stream, lake).

Wetland W1A is a palustrine emergent wetland located in the southwestern portion of the Project Area, adjacent to an agricultural field and approximately 38 feet south of Stream S1A (Snidecar Drain). Vegetation within W1A is dominated by brookweed (*Samolus parviflorus*; OBL) and interspersed with fragrant flatsedge (*Cyperus odoratus*; FACW), cinnamon willow-herb (*Epilobium coloratum*; OBL), and narrowleaf plantain (*Plantago lanceolata*; FACU). Hydric soils were determined based on the following indicators: depleted below dark surface (A11) and depleted matrix (F3). Visual indications of wetland hydrology included high water table (A2), saturation (A3), algal mat or crust (B4), as well as secondary indicators including saturation visible on aerial imagery (C9), and FAC-neutral test (D5).

Wetland W2A is a palustrine emergent wetland located in the northern portion of the Project Area, approximately 173 feet east of Stream S1A (Snidecar Drain). Vegetation within W2A is characterized by narrowleaf cattail (*Typha angustifolia*; OBL), interspersed with purple loosestrife (*Lythrum salicaria*; OBL), and an overstory of (*Populus deltoides*; FAC) and sandbar willow (*Salix interior*; FACW). Hydric soils were determined based on the following indicators: loamy mucky mineral (F1) and depleted matrix (F3). Visual indications of wetland hydrology included high water table (A2), saturation (A3), drift deposits (B3), algal mat or crust (B4), as well as many secondary indicators.

Wetland W3A, is a palustrine emergent wetland located in the northern portion of the Project Area, approximately 64 feet southeast of Stream S1A (Snidecar Drain). Vegetation within W3A is composed entirely of reed canary grass (*Pharlaris arundinacea*; FACW). Hydric soils were determined based on the presence of a depleted matrix (F3). Visual indications of wetland hydrology included drainage patterns (B10), geomorphic position (D2), and FAC-neutral test (D5).

Wetland W4A is a palustrine scrub-shrub wetland located in the north-central portion of the Project Area and connects with Stream S2A. Vegetation within this wetland is dominated by reed canary grass, sandbar willow, and is interspersed with small patches of American elm (*Ulmus americana*; FACW) and eastern American black walnut (*Juglans nigra*; FACU). Hydric soils were determined based on the presence of a depleted matrix (F3). Visual indications of wetland hydrology included high water table (A2), saturation (A3), geomorphic position (D2), and FAC-neutral test (D5).

Wetland W5A is a palustrine emergent wetland located in the eastern portion of the Project Area. Vegetation at W5A is dominated by narrlowleaf cattail, fox sedge (*Carex vulpinoidea*; FACW), and slender rush (*Juncus tenuis*; FAC). Hydric soils were determined based on the presence of a depleted matrix (F3). Visual indications of wetland hydrology included surface water (A1), high water table (A2), saturation (A3), algal mat or crust (B4), as well as several secondary indicators.

3.2 <u>Streams</u>

The field investigation completed by ECT identified one (1) perennial stream and one (1) ephemeral stream within the Project Area. The identified streams exhibited morphological features such as defined bed, bank, and evidence of water flow. Both streams are regulated (by EGLE) (**Appendix A: Figure 7**,). **Table 3-2** summarizes the stream characteristics. **Appendix C** presents copies of photographs depicting these streams.

Stream ID	Flow Regime	Regulatory Status ¹	OHWM (ft)	TOB Width (ft)	Culvert Circumference (ft)	Length within (Linear Feet)
S1A	Perennial	Regulated	10	14	NA	1,508
S2A	Ephemeral	Regulated	0.5	2	NA	122
					Total	1,630

Table 3-2.Stream Summary Data

Source: ECT, 2021.

¹ Final jurisdictional determination is made by EGLE through the permitting process.

3.3 <u>Floodplains</u>

There are no FEMA floodplains mapped within the Project Area, however, EGLE regulation of state floodplains would need to be determined through a drainage review and floodplain mapping.

3.4 Upland Conditions

Uplands adjacent to wetlands consisted predominantly of managed grasslands and forested areas. Vegetation in the uplands included autumn olive (*Elaeagnus umbellate*; UPL), eastern American walnut, white ash (*Fraxinus americana*; FACU), American elm, buckthorn (*Rhamnus cathartica*; FAC), boxelder (*Acer negundo*; FAC), rough bentgrass (*Agrostis scabra*; FAC), fall panicgrass (*Panicum dichotomiflorum*; FACW), red fescue (*Festuca rubra*; FACU), Virginia wild rye (*Elymus virginicus*; FACW), Canada thistle (*Circium arvense*; FACU), red clover (*Trifolium pratense*; FACU), white vervain (*Verbena urticifolia*; FAC), wild carrot (*Daucus carota*; UPL), wild teasel (*Dipsacus fullonum*; FACU), tall goldenrod (*Solidago altissima*; FACU), Morrow's honeysuckle (*Lonicera morrowii*; FACU), black raspberry (*Rubus occidentalis*; UPL), poison ivy (*Toxicodendron radicans*, FAC), Virginia creeper (*Parthenocissus quinquefolia*; FACU), calico aster (*Symphyotrichum lateriflorum*; FACW), stout wood reed, and multifora rose (*Rosa multiflora*; FACU). Upland areas are typically higher in elevation than wetlands, however, the Project Area is relatively flat with little elevational change. The soil in the uplands consisted of 0 to 18 inches of brown loamy/clayey soils. Soils lacked the redoximorphic features found in hydric soils. There was no indication of wetland hydrology in upland areas.

4.0 Permitting Consideration

4.1 <u>Federal Considerations</u>

Since 1984, the federal government has authorized the State of Michigan to administer the Clean Water Act (CWA) Section 404 program within its borders, allowing them to regulate impacts to wetlands and Waters of the U.S. (WOTUS). Because the program is administered by the State of Michigan, applicants for most wetland permits are required only to apply to the EGLE for approval under Part 303 of NREPA (State of Michigan 1994). However, there are exceptions where the USACE, maintains jurisdiction within Michigan. In these areas, a separate permit must be received from both the USACE and the EGLE. USACE jurisdiction over WOTUS is maintained under Section 10 of the federal Rivers and Harbors Act of 1899 (33 U.S.C. 403; Chapter 425, March 3, 1899; 30 Stat.1151):

- 1. Traditionally navigable waters:
 - o Great Lakes;
 - Connecting channels to the Great Lakes;
 - Waters connected to the Great Lakes where navigational conditions are maintained; and
 - Wetlands that are directly adjacent to these waters.

Wetlands within the Project Area are not located in or adjacent to a Great Lake or their connecting navigable waters and therefore do not fall under USACE jurisdiction.

4.2 <u>State Considerations</u>

In Michigan, wetlands, streams, and floodplains are regulated by the EGLE in coordination with USACE and the United States Environmental Protection Agency (EPA) under NREPA. These agencies make permitting and compliance determinations regarding wetlands, streams, and floodplains in the State of Michigan, and have the final decision in matters of regulatory status. Under Section 404 of the CWA, WOTUS is regulated jointly by EGLE and USACE. USACE has regulatory authority over Section 10 Waters and tribal lands. The EPA oversees the State's 404 programs and will assist in permit review if the Project impacts exceed thresholds outlined in the EPA Memorandum of Understanding (MOU). A permit is required for activities such as, but not limited to, the placement of fill, dredging of material,

draining of surface water, or constructing a structure within a regulated wetland or stream. Wetlands are protected under Part 303, Wetland Protection, of the NREPA. EGLE assumes regulatory authority over wetlands that are 5 acres or greater in the total area; contiguous to (directly adjacent to, connected to) an inland lake, pond, or stream; within 500 feet of an inland lake, pond, or stream; or within 1,000 feet of a Great Lake, Lake Saint Clair, the Saint Mary's River, the Saint Clair River, or the Detroit River.

EGLE may also exert regulatory control over isolated wetlands less than five (5) acres in size "...if the department determines that protection of the area is essential to the preservation of the natural resources of the state from pollution, impairment, or destruction and the department has so notified the owner."

The following activities are prohibited within regulated wetlands without an EGLE permit:

- 1. The placement of fill material;
- 2. Dredging;
- 3. Construction within; and/or
- 4. The draining of surface water from a wetland.

Inland lakes, streams, and rivers are protected and regulated under Part 301, Inland Lakes and Streams, of the NREPA. EGLE assumes regulatory authority over natural or artificial inland lakes that are greater than five (5) acres in size and streams that have definite banks, a bed, and visible evidence of a continued flow or continued occurrence of water. There were two (2) regulated streams identified within the Project Area.

Under Part 31, Water Resources Protection, EGLE regulates development, grading, fill and cut in floodplains with a drainage area greater than two (2) squares miles. EGLE does not regulate floodplains of the Great Lakes. A person shall not alter a floodplain except as authorized by a floodplain permit issued by EGLE under NREPA, Part 13, Permits (all water resources permits are under Part 13). The purpose of Part 31 is to assure that the flow carrying capacity of a watercourse is not harmfully obstructed and that the floodway portion of the floodplain is not used for residential construction. There are no floodplains within the Project Area.

NREPA, Part 303, Wetlands Protection, defines a pond as a natural or permanent artificial pond that has more than one (1) acre but less than five (5) acres of permanent open water. This does not include ponds constructed by excavating or diking dry land and maintained for the sole purpose of cooling or storing water and does not include lagoons used for treating polluted water. NREPA, Part 301, does not regulate ponds that are less than five (5) acres in size.

The following activities are prohibited within regulated inland lakes and streams without an EGLE permit:

- 1. Dredging or filling bottomland;
- 2. Constructing, enlarging, extending, removing, or placing a structure on bottomland;
- 3. Erecting, maintaining, or operating a marina;
- 4. Creating, enlarging, or diminishing an inland lake or stream;
- 5. Structurally interfering with the natural flow of an inland lake or stream;
- 6. Constructing, dredging, commencing, extending, or enlarging an artificial canal, channel, ditch, lagoon, pond, lake, or similar waterway where the purpose is an ultimate connection with an existing inland lake or stream, or where any part of the artificial waterway is located within 500 feet of the ordinary high-water mark of an existing inland lake or stream; and
- 7. Connecting any natural or artificially constructed waterway, canal, channel, ditch, lagoon, pond, lake, or similar water with an existing inland lake or stream for navigation or any other purpose.

A total of six (6) wetlands were reviewed and delineated within the Project Area. It is ECT's professional opinion that five (5) of the wetlands fit the requirements to be regulated and therefore, will likely require a permit from EGLE to impact (**Appendix A: Figure 7**).

4.3 <u>County Considerations</u>

A county drain commissioner regulates activities within designated county drains and their easements following the Drain Code of 1956, PA 40 of 1956 (Michigan Drain Code). As used in the act, "commissioner", "drain commissioner", or "county drain commissioner" means the elected county drain commissioner or the person or persons designated to perform the duties of the elected county drain commissioner.

IBI Group HMA STIL Facility Project

Streams that are regulated by EGLE may be named "drain" but are not always designated as a county drain by the county. Streams that are legally designated as a county drain have an easement regulated by the county or public service commission. According to the Michigan Drain Code, "The word 'drain', whenever used in this act, shall include the mainstream or trunk and all tributaries or branches of any creek or river, any watercourse or ditch, either open or closed, any covered drain, any sanitary or any combined sanitary and storm sewer or storm sewer or conduit composed of tile, brick, concrete, or other material, any structures or mechanical devices, that will properly purify the flow of such drains, any pumping equipment necessary to assist or relieve the flow of such drains and any levee, dike, barrier, or a combination of any or all of same constructed, or proposed to be constructed, for drainage or the purification of the flow of such drains, but shall not include any dam and flowage rights used in connection therewith which is used for the generation of power by a public utility subject to regulation by the public service commission."

The Washtenaw County Drain Commissioner has jurisdiction over all established drains within the county, all new drain construction, maintenance of existing drains, and the establishment of water management districts.

The Washtenaw County Drain Commissioner requires permits for activities within all county drain easements, including drain crossings and encroachment (utilities and driveways); they also review and issue soil erosion and sedimentation pollution control permits, site plans, and drainage plan reviews.

There are no designated county drains within the Project Area.

5.0 Conclusions

ECT conducted a wetland and stream delineation on the approximately 46-acre Project Area for the HMA STIL Facility Project in Washtenaw County, Michigan. During the assessment, ECT identified six (6) wetlands (W1A, W2A, W3A, W4A, W5A, and W6A) and two streams (S1A = Snidecar Drain, S2A = unnamed stream). Of the five (5) wetlands identified within the Study Area, five (5) of these wetlands (W1A, W2A, W3A, and W4A) are likely regulated by EGLE, amounting to 0.62 acres. In addition, both identified streams a likely regulated by EGLE.

It is ECT's professional opinion that wetland W5A is not likely to be regulated by EGLE, because the wetland is less than five (5) acres in size; is not contiguous to an inland lake, pond, or stream; and, is not located within 500 feet of an inland lake, pond, or stream.

It is unlawful to deposit fill or dredge material, drain surface water, or construct a structure in a regulated water resource without a permit from EGLE. EGLE has the final jurisdictional determination of wetlands and streams within the State of Michigan through the permitting process.

ECT's evaluation was performed following generally accepted procedures for conducting wetland and watercourse evaluations. ECT's conclusion reflects our professional opinion based on conditions present at the time of the evaluation.

BUSINESS CONFIDENTIAL NOT FOR DISTRIBUTION

6.0 References

- EGLE. 2021. "EGLE Wetlands Map Viewer Michigan Wetlands Inventory." 2021. https://www.mcgi.state.mi.us/wetlands/index.html.
- Environmental Laboratory. 1987. "Corps of Engineers Wetlands Delineation Manual. Wetlands Research Program - Technical Report Y-87-1." U.S. Army Corps of Engineers.
- FEMA. 2021. "National Flood Hazard Layer (NFHL) Viewer [ArcGIS Web Application]." 2021. https://hazards-

fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529 aa9cd.

- State of Michigan. 1994. *Natural Resources and Environmental Protection Act (NREPA), as Amended. Act* 451 of 1994. http://www.legislature.mi.gov/documents/mcl/pdf/mcl-Act-451-of-1994.pdf.
- USACE. 2012. "Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region. (Version 2.0)." ERDC/EL TR-12-1. U.S. Army Corps of Engineers.

http://www.usace.army.mil/Portals/2/docs/civilworks/regulatory/reg_supp/NCNE_suppv2.pdf

- ———. 2018. "National Wetland Plant List (Version 3.4)." U.S. Army Corps of Engineers. http://wetlandplants.usace.army.mil/nwpl_static/v34/home/home.html.
- USDA-NRCS. 2018. "Field Indicators of Hydric Soils in the United States: A Guide for Identifying and Delineating Hydric Soils, Version 8.2, 2018." Edited by LM Vasilas, GW Hurt, and JF Berkowitz. US Dep. of Agriculture (USDA) - Natural Resources Conservation Service (NRCS). https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053171.pdf.
- USFWS. 2021. "NWI." National Wetlands Inventory Wetlands Mapper (Last Modified May 2019). 2021. https://www.fws.gov/wetlands/data/Mapper.html.
- USGS. 2019. "Ann Arbor East, Quadrangle, Michigan- Washtenaw County." 7.5 Minute Series. U.S. Geological Survey.
- ———. 2021a. "National Hydrography Dataset (NHD)." 2021. https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
- ———. 2021b. "USGS Topo Viewer Get Maps." USGS Topoview. 2021. https://ngmdb.usgs.gov/maps/topoview/viewer.

Common Wetland Definitions

100-year flood: A flood with a magnitude that has a 1% chance of occurring or being exceeded in any given year.

Floodplain: The area of land adjoining a river or steam that will be inundated by a 100-year flood.

Hydric soil: Soil that is saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part (1991 National Technical Committee on Hydric Soils definition).

Hydrophytes: Plant species that grow in water or on a substrate that is at least periodically deficient in oxygen because of excessive water content; plants typically found in wet habitats.

Intermittent Streams: have water intermittently throughout the year when upstream waters or groundwater provide enough streamflow. May not have flowing surface water during dry times of the year.

Isolated Wetland: "wetland that is not subject to regulation under the Federal Water Pollution Control Act" as described by MI part 303.

Palustrine Emergent Wetland (PEM): Vegetative classification of a wetland system based on the dominant vegetation, consisting of rooted herbaceous (non-woody) plant species that have parts extending above a water surface with at least 30% aerial coverage.

Palustrine Forested Wetland (PFO): Vegetative classification of a wetland system based on the dominant vegetation consisting of woody plants 3 inches in diameter or greater, regardless of height with at least 30% aerial coverage.

Palustrine Scrub-Shrub Wetland (PSS): Vegetative classification of a wetland system based on the dominant vegetation consisting of woody plants less than 3 inches in diameter but greater than 3 ft but less than 20 ft in height OR where trees and shrubs combined have an aerial coverage no greater than 30%.

IBI Group HMA STIL Facility Project

Perennial Streams: year-round streams, typically have water year-round. Water comes from upstream tributaries or headwaters as well as precipitation.

Traditional Navigable Water: A water body that is presently used or has been previously used in the past for transport by interstate or foreign commerce vessels.

Wetland: Defined by USACE as "...areas that are inundated or saturated by surface or ground water...at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions."

Wetland hydrology: Hydrologic characteristics of areas that are periodically inundated or have soils saturated to the surface at some time during the growing season.

Wetland Indicator Status:

OBL: Obligate wetland plant that occurs almost always, 99% of the time, in wetlands under natural conditions, but which rarely occur in non-wetlands.

FACW: Facultative wetland plant that occurs usually, 67% to 99% of the time, in wetlands, but also occurs 1% to 33% of the time in non-wetlands.

FAC: Facultative plant that occurs in both wetlands and non-wetlands 33% to 67% of the time.

FACU: Plant that occurs sometimes, 1% to 33% of the time, in wetlands but occurs more often, 67% to 99% of the time, in non-wetlands.

UPL: Upland plant that occurs very rarely in wetlands, less than 1% of the time.

BUSINESS CONFIDENTIAL NOT FOR DISTRIBUTION

IBI Group HMA STIL Facility Project Wetland and Stream Delineation Report

Appendix A Maps

Figure 1 Site Location Figure 2 USGS Topographic Figure 3 NWI and NHD Features Figure 5 MWI Features Figure 6 NRCS Soil Figure 7 FEMA Flood Zone Figure 8 Wetland and Stream Delineation

1978 MIRIS Wetland Classes

Feet Sources: ECT, 2021.

IBI Group HMA STIL Facility Project

Appendix B USACE Wetland Determination Data Forms

Project/Site: HATCHi	City/County	: Superior C	harter Twp, Washt	tenaw Samp	ling Date: 2	021-10-06
Applicant/Owner: IBI Group			State: Mich	nigan Sampl	ling Point: N	IW1A-SP
Investigator(s); J. DeMoss	Section, To	wnship, Ran	nge: Section 32	T02S R07	E E	
Landform (hillslope, terrace, etc.): Hillslope		Local relief (concave, convex,	none): None	Э	
Slope (%): 2 Lat: 42.2685080	Long: -83	8.6288568	3	Datum	WGS 84	
Soil Map Unit Name: St. Clair clay loam, 6 to 12 percent s	lopes (StC)		NWI cl	lassification:	None	
Are climatic / hydrologic conditions on the site typical for this time of	f vear? Yes	V No	(If no, expla	in in Remarks	:)	
Are Vegetetion Soil or Hydrology signification	ntly disturbed?	NO				No
Are Vegetation, Soil, or Hydrology signification						
SUMMARY OF FINDINGS – Attach site map showi	ing samplir	ig point lo	ocations, trans	sects, imp	ortant fea	tures, etc.
Hydrophytic Vegetation Present? Yes No						
Hydric Soil Present? Yes No	Is th	ne Sampled	Area			
Wetland Hydrology Present? Yes No _	with	nin a Wetlan	d? Yes	s N	lo	
Remarks:						
VEGETATION – Use scientific names of plants.						
Absol	ute Dominan	Indicator	Dominance Test	t worksheet:		
Tree Stratum (Plot size: 30 ft r % Cov 1. Tilia americana 30	ver Species?	<u>Status</u> FACU	Number of Domir That Are OBL, F/	nant Species ACW, or FAC:	0	(A)
2. Carya ovata 25	/	FACU	Total Number of	Dominant		
3. Prunus serotina 15		FACU	Species Across A	All Strata:	2	(B)
4. Quercus alba 10		FACU	Dercent of Demin	ant Crasica		
5. Quercus rubra 10		FACU	That Are OBL, F/	ACW, or FAC:	0	(A/B)
15 ft r <u>90%</u>	= Total Co	ver				
Sapling/Shrub Stratum (Plot size: 13111)			Prevalence Inde	ex worksheet		h
1		·	Total % Cov	o er of:		by:
2		·		<u> </u>	x = 0	—
3		·	FAC opposion	0	$x_2 = 0$	—
4		· ——	FAC species _	90	$x_{3} = 0$	
5	- Total Ca		LIPI species	0	$x_{5} = 0$	—
Herb Stratum (Plot size: <u>5 ft r</u>)	= 10tai C0	Vei	Column Totals	90	(A) 360	(B)
1						(2)
2			Prevalence	Index = B/A	= 4.0	
3			Hydrophytic Ve	getation Indi	cators:	
4		·	1 - Rapid Te	st for Hydroph	nytic Vegetat	ion
5			2 - Dominan	ce Test is >50)%	
6		·	3 - Prevalend	ce Index is ≤3	.0'	
7		·	4 - Morpholo data in Re	ogical Adaptati emarks or on	ions' (Provid a separate s	e supporting
8		·	Problematic	Hydrophytic V	/egetation ¹ (Explain)
9		·			ogenation (
10	= Total Co	ver	¹ Indicators of hyd be present, unles	dric soil and w ss disturbed o	etland hydro r problematio	logy must c.
1			Hydrophytic			
2			Vegetation			,
	= Total Co	ver	Present?	Yes	No	_
Remarks: (Include photo numbers here or on a separate sheet.)						
Additional Tree species in sample plot: Carpinus caroliniana Additional plant species outside of sample plot: Acer sacch	a 5%, Ulmus a Iarum, Berber	imericana 5 is thunberg	9% Jii, Lonicera maao	ckii, Carex p	ensylvanica	a

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)									
Depth	Matrix		Redo	x Features	5				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²	Texture	Remarks	
0-9	10YR 3/1	100					Clay Loam		
<u>9 ⁻ 18</u>	10YR 4/3	100					Clay Loam		
-									
-									
-									
				·					
17			duran di Mantaira - Mar				21 an artisma DL a		
Type: C=C	oncentration, D=Dep	pletion, RM=Re	educed Matrix, Ma	S=Masked	Sand Gra	ains.	Location: PL=	Pore Lining, M=Ma	atrix.
Hydric Soli	indicators:						Indicators for P	roblematic Hydric	5011S :
Histoso	I (A1)		Sandy C	Sleyed Ma	trix (S4)		Coast Prairi	e Redox (A16)	
Histic E	pipedon (A2)		Sandy F	Redox (S5))		Dark Surfac	e (S7)	
Black H	istic (A3)		Stripped	d Matrix (S	6)		Iron-Mangar	iese Masses (F12)	
Hydroge	en Sulfide (A4)		Loamy I	Mucky Min	ieral (F1)		Very Shallow Dark Surface (TF12)		
Stratifie	d Layers (A5)		Loamy o	Sleyed Ma	atrix (F2)		Other (Expla	iin in Remarks)	
	uck (A10)	(() ()	Deplete	d Matrix (F	-3)				
Deplete	d Below Dark Surface	ce (A11)	Redox L	Jark Surfa	ce (F6)		3 maliantana af hu	alaa a ku di a u a a a da dia	
Inick D	ark Surface (A12)		Deplete	d Dark Su	rface (F7)		Indicators of hy	drophytic vegetatio	n and
Sandy M	Mucky Mineral (S1)		Redox L	Depression	ns (F8)		wetland hyd	ology must be pres	sent,
5 cm M	ucky Peat or Peat (S	53)					uniess distu	rbed or problematic	
Type:	Layer (if observed)	:							
Depth (in	iches):		_				Hydric Soil Pres	ent? Yes	No
Remarke:									
Tternarks.									
HYDROLC)GY								
Wetland Hy	drology Indicators	:							
Primary Indi	cators (minimum of	one is required	; check all that ap	oply)			Secondary Inc	licators (minimum o	of two required)
Surface	Water (A1)		Water-Sta	ined Leave	es (B9)		Surface S	oil Cracks (B6)	
High Wa	ater Table (A2)		Aquatic Fa	una (B13))		Drainage	Patterns (B10)	
Saturati	ion (A3)		True Aqua	tic Plants	(B14)		Dry-Seas	on Water Table (C2	2)
Water N	/larks (B1)		Hydrogen	Sulfide Od	lor (C1)		Crayfish I	Surrows (C8)	
Sedime	nt Deposits (B2)		Oxidized F	Rhizospher	res on Livi	ng Roots	(C3) Saturation	n Visible on Aerial I	magery (C9)
Drift De	posits (B3)		Presence	of Reduce	d Iron (C4)	Stunted o	r Stressed Plants (D1)
Algal M	at or Crust (B4)		Recent Iro	n Reductio	on in Tiller	, I Soils (Cf	Geomorn	hic Position (D2)	/

Stunted	or Stressed	Plante	(D1)

			· /
Algal Mat or Crust (B4)	Recent Iron Reduction in T	illed Soils (C6) Geomorphic Position (D2	:)
Iron Deposits (B5)	Thin Muck Surface (C7)	FAC-Neutral Test (D5)	
Inundation Visible on Aerial Imag	gery (B7) Gauge or Well Data (D9)		
Sparsely Vegetated Concave Su	rface (B8) Other (Explain in Remarks)	
Field Observations:			
Surface Water Present? Yes _	No Depth (inches):		
Water Table Present? Yes _	No Depth (inches):		
Saturation Present? Yes _ (includes capillary fringe)	No _ Depth (inches):	Wetland Hydrology Present? Yes	No
Describe Recorded Data (stream gau	uge, monitoring well, aerial photos, previous	inspections), if available:	
Remarks:			

Project/Site: HATCHi	City/County: Superior Charter Twp, Washtenaw	Sampling Date: 2021-10-06
Applicant/Owner: IBI Group	State: Michigan	Sampling Point: NW2A-SP
Investigator(s): J. DeMoss	Section, Township, Range: Section 32 T025	S R07E
Landform (hillslope, terrace, etc.): Floodplain	Local relief (concave, convex, none):	None
Slope (%): 0 Lat: 42.2697670	Long: -83.6295771	Datum: WGS 84
Soil Map Unit Name: Hoytville silty clay loam (Ho)	NWI classific	_{ation:} None
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🗾 No (If no, explain in Ro	emarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstances" p	resent? Yes 🔽 No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any answer	rs in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes No Yes No Yes No	Is the Sampled Area within a Wetland?	Yes	No
Remarks:				

VEGETATION – Use scientific names of plants.

20 ft -	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1. Juglans nigra	35	<u> </u>	FACU	That Are OBL, FACW, or FAC: 3 (A)
2. Ulmus americana	5		FACW	
3.				Species Across All Strata: 6 (B)
4				
5				Percent of Dominant Species
	40%	- Total Car		That Are OBL, FACW, or FAC: <u>30</u> (A/B)
Sapling/Shrub Stratum (Plot size: 15 ft r)		- 10tai C0V		Prevalence Index worksheet:
1. Lonicera maackii	15	~	UPL	Total % Cover of: Multiply by:
2 Rhamnus cathartica	10	~	FAC	$OBL \text{ species } 0$ $x_1 = 0$
3				FACW species 70 x 2 = 140
۵				EAC species 10 x 3 = 30
4	·			EACH species $\frac{10}{80}$ $x = \frac{320}{320}$
5	25%			$\frac{1}{15} \qquad x_5 = \frac{75}{75}$
Herb Stratum (Plot size: 5 ft r)	25%	= Total Cov	ver	$\frac{10}{25} \times 5 = \frac{10}{25} \times $
1 Elymus virginicus	50	~	FACW	Column Totals: $\frac{173}{173}$ (A) $\frac{303}{173}$ (B)
2 Festuca rubra	35	~	FACU	Prevalence Index = $B/A = 3.2$
3 Monarda fistulosa	10		FACU	Hydrophytic Vegetation Indicators:
Solidado didantea	5		FACW	1 - Rapid Test for Hydrophytic Vegetation
5	·			2 - Dominance Test is >50%
6				$3 - Prevalence Index is \leq 3.0^{1}$
7				4 - Morphological Adaptations ¹ (Provide supporting
<i>I</i>				data in Remarks or on a separate sheet)
8				Problematic Hydrophytic Vegetation ¹ (Explain)
9				
10				¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft r)	100%	= Total Cov	ver	be present, unless disturbed or problematic.
1 Vitis riparia	10	~	FACW	Hudronhutia
2				Vegetation
£	10%	- Total Car		Present? Yes No
Pemarka: (Include photo numbers here or on a concrete -	shoot)	- 10tai C0V		
remarks. (include proto numbers here of off a separate	sneet.)			

Other vegetation outside of sample plot: Rubus occidentalis, Setaria viridis, Hackelia virginiana, Morus alba, Acer negundo, Parthenocissus quinquefolia, Persicaria virginiana,

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)							
Depth Matrix Redox Features							
(inches) Color (moist) %	Color (moist)	%	Type ¹	_Loc ²	Texture Remarks		
<u>0 - 12</u> <u>10YR 4/1</u> <u>100</u>					Clay Loam		
<u>12 - 18</u> <u>10YR 5/1</u> <u>70</u>	7.5YR 5/8	30	<u> </u>	М	Clay Loam		
-							
-							
-			_				
-		_			·		
¹ Type: C=Concentration D=Depletion	RM=Reduced Matrix M	S=Maske	d Sand Gr	ains	² Location: PI =Pore Lining M=Matrix		
Hydric Soil Indicators:	in rieddod mans, n			unite.	Indicators for Problematic Hydric Soils ³ :		
Histosol (A1)	Sandy	Gleyed M	atrix (S4)		Coast Prairie Redox (A16)		
Histic Epipedon (A2)	Sandy	Sandy Redox (S5)			Dark Surface (S7)		
Black Histic (A3)	Strippe	Stripped Matrix (S6)			Iron-Manganese Masses (F12)		
Hydrogen Sulfide (A4)	4) Loamy Mucky Mineral (F1)			Very Shallow Dark Surface (TF12)			
Stratified Layers (A5)	Stratified Layers (A5) Loamy Gleyed Matrix (F2)		Other (Explain in Remarks)				
2 cm Muck (A10)	2 cm Muck (A10) Depleted Matrix (F3)						
Depleted Below Dark Surface (A11)	Redox	Dark Surf	ace (F6)				
Thick Dark Surface (A12)	Deplete	ed Dark S	urface (F7)	³ Indicators of hydrophytic vegetation and		
Sandy Mucky Mineral (S1)	Redox	Depressio	ons (F8)		wetland hydrology must be present,		
5 cm Mucky Peat or Peat (S3)					unless disturbed or problematic.		
Restrictive Layer (if observed):							
Туре:					Hudric Soil Present? Vos No V		
Depth (inches):							
Remarks:							
HYDROLOGY							
Wetland Hydrology Indicators:							
Primary Indicators (minimum of one is re	quired; check all that a	pply)			Secondary Indicators (minimum of two required)		
Surface Water (A1) Water-Stained Leaves (B9)			Surface Soil Cracks (B6)				

,					
Primary Indicators (minimum	of one is required;	check all that a	oply)		Secondary Indicators (minimum of two require
Surface Water (A1)		Water-St	ined Leaves (B9)		Surface Soil Cracks (B6)
High Water Table (A2)		Aquatic F	auna (B13)		Drainage Patterns (B10)
Saturation (A3)		True Aqu	atic Plants (B14)		Dry-Season Water Table (C2)
Water Marks (B1)		Hydroger	Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)		Oxidized	Rhizospheres on Living F	Roots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)		Presence	of Reduced Iron (C4)		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)		Recent Ir	on Reduction in Tilled So	oils (C6)	✓ Geomorphic Position (D2)
Iron Deposits (B5)		Thin Muc	(Surface (C7)	. ,	FAC-Neutral Test (D5)
Inundation Visible on Ae	rial Imagery (B7)	Gauge of	Well Data (D9)		_ 、 、
Sparsely Vegetated Con	cave Surface (B8)	Other (E:	plain in Remarks)		
Field Observations:					
Surface Water Present?	Yes No	 Depth (i 	iches):		
Water Table Present?	Yes No	 Depth (i 	iches):		
Saturation Present?	Yes No _	✓ Depth (i	iches):	Wetland H	dydrology Present? Yes No
Describe Recorded Data (stre	eam gauge, monito	ring well, aeria	photos, previous inspect	tions), if ava	ailable:
(gg-,	g ,	F	,,	
Remarks:					

~

Project/Site: HATCHi	City/County: Superior Charter Twp, Washte	naw Sampling Date: 2021-10-06
Applicant/Owner: IBI Group	State: Michi	gan_Sampling Point: W1A-SP
Investigator(s): J. DeMoss	Section, Township, Range: Section 32	02S R07E
Landform (hillslope, terrace, etc.): Outwash, Flat	Local relief (concave, convex, no	one): Undulating
Slope (%): 0 Lat: 42.2692109	Long: -83.6307970	Datum: WGS 84
Soil Map Unit Name: Hoytville silty clay loam (Ho)	NWI cla	ssification: None
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🖌 No (If no, explain	in Remarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstance	es" present? Yes 🔽 No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any a	nswers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, transe	ects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes V No Yes V No Yes V No	Is the Sampled Area within a Wetland? Yes No
Remarks:		

20.64 *	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft f)	% Cover	Species?	Status	Number of Dominant Species
1	·			That Are OBL, FACW, or FAC: 1 (A)
2				Total Number of Dominant
3				Species Across All Strata: <u>1</u> (B)
4				Demonst of Deminent Operator
5				That Are OBL_FACW or FAC: 100 (A/B)
		= Total Co	ver	
Sapling/Shrub Stratum (Plot size: 15 ft r)				Prevalence Index worksheet:
1				Total % Cover of:Multiply by:
2				OBL species <u>60</u> x 1 = <u>60</u>
3.				FACW species <u>15</u> x 2 = <u>30</u>
4.				FAC species 0 x 3 = 0
5				FACU species $10 \times 4 = 40$
		= Total Co	ver	UPL species 0 $x_5 = 0$
Herb Stratum (Plot size: <u>5 ft r</u>)		10101 00		Column Totals: 85 (A) 130 (B)
1. Samolus parviflorus	50	<u> </u>	OBL	
2. Cyperus odoratus	15		FACW	Prevalence Index = B/A = <u>1.5</u>
3. Epilobium coloratum	10		OBL	Hydrophytic Vegetation Indicators:
4. Plantago lanceolata	10		FACU	✓ 1 - Rapid Test for Hydrophytic Vegetation
5.				∠ 2 - Dominance Test is >50%
6.				✓ 3 - Prevalence Index is ≤3.0 ¹
7.				4 - Morphological Adaptations ¹ (Provide supporting
8				data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				
10	85%	- Total Co		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft r)		- 10(a) 00	461	be present, unless disturbed or problematic.
1				Hydrophytic
2.				Vegetation
		= Total Co	ver	Present? Yes No No
Remarks: (Include photo numbers here or on a separate s	sheet.)			

Profile Desc	cription: (Describe	to the de	pth needed to docu	ment the	indicator	or confir	m the absence of indicators.)	
Depth	Matrix	0/	Red	ox Feature	es Turn a ¹	12		
(incnes)			Color (moist)	%	iype	LOC	Clav Loam	
<u>10 ⁻ 18</u>	<u>10YR 4/2</u>	60	<u>10YR 4/3</u>	40	<u> </u>	M	Clay Loam	
		_			_			
-								
¹ Type: C=C	oncentration D=De		/=Reduced Matrix_N	 IS=Maske		ains	² Location: PL=Pore Lining M=Matrix	
Hydric Soil	Indicators:					uno.	Indicators for Problematic Hydric Soils ³ :	
Histosol	(A1)		Sandy	Gleyed M	atrix (S4)		Coast Prairie Redox (A16)	
Histic E	pipedon (A2)		Sandy	Redox (S	5)		Dark Surface (S7)	
Black H	istic (A3)		Strippe	ed Matrix (S6)		Iron-Manganese Masses (F12)	
Hydroge	en Sulfide (A4)		Loamy	Mucky M	ineral (F1)		Very Shallow Dark Surface (TF12)	
Stratifie	d Layers (A5)		Loamy	Gleyed N	latrix (F2)		Other (Explain in Remarks)	
2 cm Mi	uck (A10) d Balavy Dark Surfa	aa (A11)	Pedev	ed Matrix	(F3) (F6)			
Thick D	ark Surface (A12)	ce (ATT)	Redox	od Dark Sun	ace (FO) Jurface (F7	`	³ Indicators of hydrophytic vegetation and	
Sandy M	Aucky Mineral (S1)		Beplet	Depressi	ons (F8))	wetland hydrology must be present.	
5 cm Mu	ucky Peat or Peat (S	\$3)					unless disturbed or problematic.	
Restrictive	Layer (if observed)):						
Туре:								
Depth (in	ches):						Hydric Soil Present? Yes No	
Remarks:								
HYDROLO	GY							
Wetland Hy	drology Indicators	:						
Primary Indi	cators (minimum of	one is requ	uired; check all that a	pply)			Secondary Indicators (minimum of two requ	ired)
Surface	Water (A1)		Water-St	ained Lea	ves (B9)		Surface Soil Cracks (B6)	
🖌 🖌 High Wa	ater Table (A2)		Aquatic F	auna (B1	3)		Drainage Patterns (B10)	
🖌 Saturati	on (A3)		True Aqu	atic Plants	s (B14)		Dry-Season Water Table (C2)	
Water M	larks (B1)		Hydroger	n Sulfide C	Odor (C1)		Crayfish Burrows (C8)	
Sedime	nt Deposits (B2)		Oxidized	Rhizosph	eres on Liv	ing Roots	s (C3) 🕑 Saturation Visible on Aerial Imagery (C	9)
Drift De	posits (B3)		Presence	of Reduc	ed Iron (C	4)	Stunted or Stressed Plants (D1)	
🖌 🖌 Algal Ma	at or Crust (B4)		Recent Ir	on Reduc	tion in Tille	d Soils (C	C6) Geomorphic Position (D2)	
Iron Dep	posits (B5)		Thin Muc	k Surface	(C7)		 FAC-Neutral Test (D5) 	

Iron Deposits (B5)		Thin Muck Surface (C7)	FAC-Neutral Test	t (D5)	
Inundation Visible on Aeri	al Imagery (B7)	Gauge or Well Data (D9)			
Sparsely Vegetated Conc	ave Surface (B8)	Other (Explain in Remarks)			
Field Observations:					
Surface Water Present?	Yes No _	Depth (inches):			
Water Table Present?	Yes 🖌 No _	Depth (inches): 12			
Saturation Present?	Yes 🖌 No _	Depth (inches): 9	Wetland Hydrology Present?	Yes 🗹	No
(includes capillary fringe)					
Describe Recorded Data (stre	am gauge, monitor	ring well, aerial photos, previous inspect	ions), if available:		
Remarks:					

Project/Site: HATCHi	City/County: Superior Charter Twp, Washtenaw	Sampling Date: 2021-10-06
Applicant/Owner: IBI Group	State: Michigan	Sampling Point: W1A-UPL
Investigator(s): J. DeMoss	Section, Township, Range: Section 32 T025	S R07E
Landform (hillslope, terrace, etc.): Upland, Flat	Local relief (concave, convex, none):	None
Slope (%): 0 Lat: 42.2691384	Long: -83.6305240	Datum: WGS 84
Soil Map Unit Name: Hoytville silty clay loam (Ho)	NWI classific	_{ation:} None
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🔽 No (If no, explain in R	emarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstances" p	resent? Yes 🔽 No
Are Vegetation, Soil, or Hydrology naturally pre-	oblematic? (If needed, explain any answe	rs in Remarks.)
SUMMARY OF FINDINGS Attack site man showing		in a stant facture of the

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No <u>v</u> No <u>v</u> No <u>v</u>	Is the Sampled Area within a Wetland?	Yes	No
Remarks:					

VEGETATION – Use scientific names of plants.

20 ft r	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 Tt T)	<u>% Cover</u>	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 1 (A)
2				Total Number of Deminent
3.				Species Across All Strata: 2 (B)
A				
				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 50 (A/B)
Sepling/Shruh Stratum (Plat size) 15 ft r		= Total Cov	/er	Prevalence Index worksheet:
Saping/Shiub Stratum (Plot size)				
1				
2				OBL species $0 \times 1 = 0$
3				FACW species <u>15</u> x 2 = <u>30</u>
4				FAC species _60 x 3 = _180
5.				FACU species 45 $x_4 = 180$
		= Total Cov		UPL species 0 $x_5 = 0$
Herb Stratum (Plot size: 5 ft r)		- 10(a) 00(Column Totals: 120 (A) 390 (B)
Agrostis scabra	55	~	FAC	
2. Cirsium arvense	35	~	FACU	Prevalence Index = B/A = 3.3
3. Panicum dichotomiflorum	15		FACW	Hydrophytic Vegetation Indicators:
4. Trifolium pratense	10		FACU	1 - Rapid Test for Hydrophytic Vegetation
5. Verbena urticifolia	5		FAC	2 - Dominance Test is >50%
6.				3 - Prevalence Index is ≤3.0 ¹
7.				4 - Morphological Adaptations ¹ (Provide supporting
8.				data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				
10	120%			¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft r	12070	= Total Cov	ver	be present, unless disturbed or problematic.
				Hydrophytic
2				Present? Yes No
		= Total Cov	/er	
Remarks: (Include photo numbers here or on a separate s	sheet.)			

Additional vegetation seen outside of sample plot (field community): Abutilon theophrasti, Echinochloa crus-gali, Setaria pumila, Setaria viridis

Profile Des	cription: (Describe	to the depth	needed to docur	nent the i	ndicator	or confirm	n the absence of ind	licators.)	
Depth	Matrix		Redo	x Features	5				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²	Texture	Remarks	
0 - 11	10YR 3/1	100					Clay Loam		
11 - 18	10YR 4/3	100					Clay Loam		
-									
-									
-									
				·					
		letion RM=Re	duced Matrix M	. <u> </u>	Sand Gr	aine	² Location: PL =	Pore Lining M=Matrix	
Hydric Soil	Indicators:			J-Maskeu		anno.	Indicators for Pr	roblematic Hydric Soils ³ :	
Histoso	ι (Δ1)		Sandy	Sloved Ma	triv (SA)		Coast Prairie	Redox (A16)	
Histic E	ninedon (A2)		Sandy C	Peday (S5)))		Coast Frame	(S7)	
Black H	istic (A3)		Stripper	Matrix (S	, (6)		Iron-Mangan	ese Masses (F12)	
Hvdroge	en Sulfide (A4)		Loamv I	Mucky Min	eral (F1)		Verv Shallow	/ Dark Surface (TF12)	
Stratifie	d Lavers (A5)		Loamy (Gleved Ma	atrix (F2)		Other (Explain in Remarks)		
2 cm M	uck (A10)		Deplete	d Matrix (F	=3)			,	
Deplete	d Below Dark Surfac	ce (A11)	Redox [Dark Surfa	ce (F6)				
Thick D	ark Surface (A12)		Deplete	d Dark Su	rface (F7)		³ Indicators of hyd	drophytic vegetation and	
Sandy M	Mucky Mineral (S1)		Redox [Depressior	ns (F8)		wetland hydro	plogy must be present,	
5 cm Mi	ucky Peat or Peat (S	3)					unless distur	bed or problematic.	
Restrictive	Layer (if observed)	:							
Type:			_				Hydric Soil Prese	ont? Yes No	
Depth (in	ches):		_				Thyune oon riese		
Remarks:									
HYDROLO	GY								
Wetland Hy	drology Indicators	:							
Primary Indi	cators (minimum of	one is required	; check all that ap	ply)			Secondary Ind	icators (minimum of two required)	
Surface	Water (A1)		Water-Sta	ined Leave	es (B9)		Surface So	oil Cracks (B6)	
High Wa	ater Table (A2)		Aquatic Fa	una (B13))		Drainage F	Patterns (B10)	
Saturati	on (A3)		True Aqua	tic Plants	(B14)		Dry-Seaso	on Water Table (C2)	
Water M	/larks (B1)		Hydrogen	Sulfide Od	dor (C1)		Crayfish B	urrows (C8)	
Sedime	nt Deposits (B2)		Oxidized F	Rhizospher	res on Liv	ing Roots	(C3) 🗹 Saturation	Visible on Aerial Imagery (C9)	
Drift De	posits (B3)		Presence	of Reduce	d Iron (C4	4)	Stunted or	Stressed Plants (D1)	
				Geomorphic Position (D2)					

Iron Deposits (B5)		Thin Muck Surface (C7)	FAC-Neutral Test (D5)		
Inundation Visible on Aeri	al Imagery (B7)	Gauge or Well Data (D9)			
Sparsely Vegetated Conc	ave Surface (B8)	Other (Explain in Remarks)			
Field Observations:					
Surface Water Present?	Yes No _	Depth (inches):			
Water Table Present?	Yes No _	Depth (inches):			
Saturation Present?	Yes No _	Depth (inches):	Wetland Hydrology Present? Yes	No	
(includes capillary fringe)			1		
Describe Recorded Data (strea	am gauge, monito	ring well, aerial photos, previous inspec	tions), if available:		
Remarks:					

Project/Site: HATCHi	City/County: Superior Charter Twp, Washtenaw	Sampling Date: 2021-10-06				
Applicant/Owner: IBI Group	State: Michigan	Sampling Point: W2A-SP				
Investigator(s): _J. DeMoss	Section, Township, Range: Section 32 T02	S R07E				
Landform (hillslope, terrace, etc.): Basin	Local relief (concave, convex, none):	Concave				
Slope (%): 0 Lat: 42.2704990	Long:83.6264494	Datum: WGS 84				
Soil Map Unit Name: Kendallville loam, 2 to 6 percent slope	es (KeB) NWI classific	ation: None				
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🗾 No (If no, explain in R	emarks.)				
Are Vegetation, Soil, or Hydrology significantly	v disturbed? Are "Normal Circumstances" p	present? Yes 🖌 No				
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any answe	rs in Remarks.)				
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.						
Hydrophytic Vegetation Present? Yes <u>V</u> No <u>No</u>	is the Sampled Area					

Hydric Soil Present? Wetland Hydrology Present?	Yes <u> </u>	Is the Sampled Area within a Wetland?	Yes No
Remarks:			

00 ft	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1. Populus deltoides	5	 ✓ 	FAC	That Are OBL, FACW, or FAC: 3 (A)
2				
2				Total Number of Dominant
3	·			Species Across All Strata: <u>5</u> (B)
4	·			Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 100 (A/B)
45 ()	5%	= Total Cov	er	
Sapling/Shrub Stratum (Plot size: 15 ft r)				Prevalence Index worksheet:
1. Salix interior	5	~	FACW	Total % Cover of:Multiply by:
2				OBL species 100 $x_{1} = 100$
2	·			EACW expected $\frac{5}{5}$ x 2 = $\frac{10}{10}$
3	·			
4	·			FAC species 5 $x^3 = 15$
5				FACU species 0 x 4 = 0
	5%	= Total Cov	ver	UPL species 0 x 5 = 0
Herb Stratum (Plot size: 5 ft r)				Column Totals: 110 (A) 125 (B)
_{1.} Typha angustifolia	95	~	OBL	
2. Lythrum salicaria	5		OBL	Prevalence Index = $B/A = 1.1$
3.				Hydrophytic Vegetation Indicators:
4				1 - Rapid Test for Hydrophytic Vegetation
5				✓ 2 - Dominance Test is >50%
6	·			\checkmark 3 - Prevalence Index is $\leq 3.0^{1}$
-				4 Membelogical Adoptations ¹ (Provide supporting
7	·			data in Remarks or on a separate sheet)
8				Problematic Hydrophytic Vegetation ¹ (Explain)
9				
10				1
	100%	= Total Cov	er	Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: <u>30 ft r</u>)				be present, unless disturbed or problematic.
1.				Hydrophytic
2				Vegetation
2	·			Present? Yes No
Demonstrant (In the demonstrate memory have been an		= Total Cov	/er	
Remarks: (Include photo numbers here or on a separate s	sneet.)			

Profile Desc	cription: (Describe	to the de	pth needed to docur	nent the	indicator	or confirm	n the absence o	of indicators	s.)	
Depth	Matrix		Redo	x Feature	es1		_			
(inches)	<u>Color (moist)</u>	%	Color (moist)	%	Type'	_Loc ²	Texture		Remarks	
0-4	10YR 4/1	100					Mucky Loam/Clay			
4 - 18	10YR 5/2	95	10YR 5/8	5	С	Μ	Clay			
-										
——										
¹ Type: C=C	oncentration, D=Dep	letion, RN	I=Reduced Matrix, MS	S=Maske	d Sand Gr	ains.	² Location:	PL=Pore Li	ning, M=Matri	ix.
Hydric Soil	Indicators:						Indicators f	or Problem	atic Hydric S	oils³:
Histosol	(A1)		Sandy (Gleyed M	atrix (S4)		Coast P	rairie Redox	(A16)	
Histic E	pipedon (A2)		Sandy F	Redox (S	5)		Dark Su	rface (S7)		
Black Hi	istic (A3)		Stripped	d Matrix (S6)	36) Iron-Manganese Masses (F12)				
Hydroge	en Sulfide (A4)		Loamy Loamy	Mucky Mi	neral (F1)		Very Shallow Dark Surface (TF12)			.)
2 cm Mi	uck (A10)		Loamy •	d Matrix ((E3)			spiain in Re	inarks)	
Deplete	d Below Dark Surfac	e (A11)	Redox [Dark Surf	ace (F6)					
Thick Da	ark Surface (A12)	(Deplete	d Dark S	urface (F7)	³ Indicators	of hydrophyt	ic vegetation	and
Sandy N	lucky Mineral (S1)		Redox [Depressio	ons (F8)		wetland	hydrology m	ust be preser	nt,
5 cm Mu	ucky Peat or Peat (S	3)					unless o	listurbed or	problematic.	
Restrictive	Layer (if observed):									
Туре:									V V	No
Depth (in	ches):						Hydric Soll F	resent?	res	NO
Remarks:							1			
HYDROLO	GY									
Wetland Hy	drology Indicators:									
Primary India	cators (minimum of o	ne is requ	ired; check all that ap	(ylq			Secondar	y Indicators	(minimum of	two required)
Surface	Water (A1)		Water-Sta	ined Leav	/es (B9)		Surfa	ce Soil Crac	ks (B6)	
High Wa	ater Table (A2)		Aquatic Fa	auna (B13	3)		V Drain	age Pattern	s (B10)	
Saturatio	on (A3)		True Aqua	tic Plants	, (B14)		Dry-S	Season Wate	r Table (C2)	
Water M	larks (B1)		Hydrogen	Sulfide O	dor (C1)		Crayf	ish Burrows	(C8)	
Sedimer	nt Deposits (B2)		Oxidized F	Rhizosphe	eres on Liv	ing Roots	(C3) 🗹 Satur	ation Visible	on Aerial Ima	agery (C9)

Presence of Reduced Iron (C4)

____ Thin Muck Surface (C7)

___ Gauge or Well Data (D9)

_ Depth (inches): 2

_ No ____ Depth (inches): _

Yes <u>V</u> No <u>Depth (inches)</u>: <u>6</u>

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

____ Recent Iron Reduction in Tilled Soils (C6)

Remarks:

✓ Drift Deposits (B3)

___ Iron Deposits (B5)

Field Observations:

Surface Water Present?

Water Table Present?

Saturation Present? (includes capillary fringe)

✓ Algal Mat or Crust (B4)

____ Inundation Visible on Aerial Imagery (B7)

___ Sparsely Vegetated Concave Surface (B8) ___ Other (Explain in Remarks)

Yes 🖌 No _

Yes

____ Stunted or Stressed Plants (D1)

✓ Geomorphic Position (D2)

Wetland Hydrology Present? Yes ____ No _

✓ FAC-Neutral Test (D5)

Project/Site: HATCHi	City/County: Superior Charter Twp, Washtenav	Sampling Date: 2021-10-06
Applicant/Owner: IBI Group	State: Michigar	Sampling Point: W2A-UPL
Investigator(s): _J. DeMoss	Section, Township, Range: Section 32 T02	2S R07E
Landform (hillslope, terrace, etc.): Hillslope	Local relief (concave, convex, none): None
Slope (%): 2 Lat: 42.2704873	Long: -83.6264185	Datum: WGS 84
Soil Map Unit Name: Kendallville loam, 2 to 6 percent slope	s (KeB) NWI classi	ication: None
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🗾 No (If no, explain in	Remarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstances"	present? Yes 🖌 No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any answ	ers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No <u>′</u> No <u>′</u> No <u>′</u>	Is the Sampled Area within a Wetland?	Yes	. No
Remarks:					

20 ft -	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	<u>% Cover</u>	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 0 (A)
2				Total Number of Deminent
3.				Species Across All Strata: 2 (B)
4				
	·			Percent of Dominant Species
5	·			That Are OBL, FACW, or FAC: 0 (A/B)
Sapling/Shrub Stratum (Plot size: 15 ft r		= Total Cov	/er	Prevalence Index worksheet:
Elaeagnus umbellata	5	~	LIPI	Total % Cover of: Multiply by:
	<u> </u>			
2				
3				FACW species $0 \times 2 = 0$
4				FAC species 0 x 3 = 0
5				FACU species 95 x 4 = 380
	5%	= Total Cov	/er	UPL species 10 x 5 = 50
Herb Stratum (Plot size: 5 ft r)				Column Totals: 105 (A) 430 (B)
1. Festuca rubra	90	<u> </u>	FACU	
2. Daucus carota	5		UPL	Prevalence Index = B/A = 4.1
3. Dipsacus fullonum	3		FACU	Hydrophytic Vegetation Indicators:
4. Solidago altissima	2		FACU	1 - Rapid Test for Hydrophytic Vegetation
5.				2 - Dominance Test is >50%
6				3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting
·	·			data in Remarks or on a separate sheet)
0	·			Problematic Hydrophytic Vegetation ¹ (Explain)
9	·			
10				¹ Indicators of hydric soil and wetland hydrology must
30 ft r	100%	= Total Cov	/er	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size: 30 TTT)				
1				Hydrophytic
2				Vegetation
		= Total Cov	/er	
Remarks: (Include photo numbers here or on a separate s	sheet.)			

Profile Desc	cription: (Describe	to the de	pth needed to docur	nent the	indicator	or confirm	n the absence of indic	cators.)	
Depth	Matrix		Redo	x Feature	s				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-4	10YR 4/1	100					Clay Loam		
<u>4 ⁻ 18</u>	10YR 5/2	85	10YR 5/8	15	<u> </u>	М	Clay Loam		
-									
-									
-									
<u> </u>									
				- Masko			² Location: PL = P	Poro Lining M=Matrix	
Hydric Soil	Indicators:				u Sanu Gr	airis.	Indicators for Pro	blematic Hydric Soils ³	
Histosol	(A1)		Sandy (Cloved M	atrix (SA)		Coast Prairie I	Redox (A16)	
Histic F	nipedon (A2)		Sandy F	Redox (St	5)		Dark Surface ((S7)	
Black H	istic (A3)		Stripped	d Matrix (56)		Iron-Mangane	ese Masses (F12)	
Hydroge	en Sulfide (A4)		Loamy	Mucky Mi	neral (F1)		Very Shallow Dark Surface (TF12)		
Stratifie	d Layers (A5)		Loamy	Gleyed M	atrix (F2)		Other (Explain in Remarks)		
2 cm Mi	uck (A10)		 Deplete 	d Matrix (F3)				
Deplete	d Below Dark Surfac	ce (A11)	Redox [Dark Surf	ace (F6)				
Thick Da	ark Surface (A12)		Deplete	d Dark Si	urface (F7))	³ Indicators of hydrophytic vegetation and		
Sandy M	/lucky Mineral (S1)		Redox [Depressio	ons (F8)		wetland hydrology must be present,		
5 cm Mi	ucky Peat or Peat (S	3)					unless disturbe	ed or problematic.	
Restrictive	Layer (if observed)	:							
Туре:									
Depth (in	ches):						Hydric Soil Presen	it? Yes No	
Remarks:									
HYDROLO	GY								
Wetland Hy	drology Indicators	:							
Primary Indi	cators (minimum of o	one is requ	<u>iired; check all that ap</u>	oply)			Secondary Indic	ators (minimum of two required)	
Surface	Water (A1)		Water-Sta	ined Leav	/es (B9)		Surface Soi	il Cracks (B6)	
High Wa	High Water Table (A2) Aquatic Fauna (B13)						Drainage Pa	atterns (B10)	
Saturati	on (A3)		True Aqua	itic Plants	(B14)		Dry-Season	ו Water Table (C2)	
Water M	larks (B1)		Hydrogen	Sulfide O	dor (C1)		Crayfish Bu	irrows (C8)	
Sedime	nt Deposits (B2)		Oxidized F	Rhizosphe	eres on Liv	ing Roots	(C3) Saturation \	√isible on Aerial Imagery (C9)	
Drift Deposits (B3) Presence of Reduced Iron (C4)					Stunted or S	Stressed Plants (D1)			

Wetland	Hyd
	-

Drimony Indicators (minimum of one is requ	ad aback all that apply)	Secondary Indicators (minimum of two required)
Phinary indicators (minimum of one is requ	Secondary indicators (minimum or two required)	
Surface Water (A1)	Surface Soil Cracks (B6)	
High Water Table (A2)	Aquatic Fauna (B13)	Drainage Patterns (B10)
Saturation (A3)	True Aquatic Plants (B14)	Dry-Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roo	ots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils	(C6) Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	FAC-Neutral Test (D5)
Inundation Visible on Aerial Imagery (E		
Sparsely Vegetated Concave Surface	 Other (Explain in Remarks) 	
Field Observations:		
Surface Water Present? Yes	No Depth (inches):	
Water Table Present? Yes	No Depth (inches):	
Saturation Present? Yes (includes capillary fringe)	No Depth (inches): W	/etland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, m	nitoring well, aerial photos, previous inspection	s), if available:
Remarks:		
Komano.		

WEILAND DET				/I – MIGWEST REGION	
Project/Site: HATCHi		City/Co	ounty: Superior	Charter Twp, Washtenaw Sampling Date: 2021-10-	06
Applicant/Owner: IBI Group				State: Michigan Sampling Point: W3A-SP	
Investigator(s): J. DeMoss		Section	n, Township, R	ange: Section 32 T02S R07E	
Landform (hillslope, terrace, etc.): Outwash			Local relie	f (concave, convex, none): <u>None</u>	
Slope (%): <u>1</u> Lat: <u>42.2706055</u>		Long:	-83.626837	75 Datum: WGS 84	
Soil Map Unit Name: Hoytville silty clay loam (Ho)				NWI classification: None	
Are climatic / hydrologic conditions on the site typical for th	is time of ye	ear? Ye	s 🖌 No	(If no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology	significantly	/ disturb	ed? Are	• "Normal Circumstances" present? Yes 🗾 No 🔄	
Are Vegetation, Soil, or Hydrology	naturally pr	oblemat	ic? (If n	needed, explain any answers in Remarks.)	
SUMMARY OF FINDINGS – Attach site map	showing	a sam	nling point	locations, transects, important features, e	tc.
		Joann	pinig point		
Hydrophytic Vegetation Present? Yes P	NO NO		Is the Sample	d Area	
Wetland Hydrology Present? Yes V	No		within a Wetla	and? Yes 🖌 No	
Remarks:					-
VEGETATION – Use scientific names of plants					
	Absolute	Domi	nant Indicator	Dominance Test worksheet:	
Tree Stratum (Plot size:30 ft r)	% Cover	Spec	ies? Status	- Number of Dominant Species	
1				That Are OBL, FACW, or FAC: <u>1</u> (A)	,
2				Total Number of Dominant	
3				_ Species Across All Strata: (B)	'
4				Percent of Dominant Species	
		= Tota	l Cover	That Are OBL, FACW, or FAC: 100 (A)	в)
Sapling/Shrub Stratum (Plot size: 15 ft r)		-		Prevalence Index worksheet:	
1				- Total % Cover of: Multiply by:	
2				$\begin{array}{c c} OBL \text{ species} & 0 & x \ 1 = 0 \\ \hline 100 & x \ 200 \end{array}$	
3				$\begin{array}{c} FACW \text{ species } 100 \\ \hline \\ FAC \text{ species } 0 \\ \hline \\ \hline \\ \end{array} \times 2 = 200 \\ \hline \\ \hline \\ \\ \end{array}$	
4				$\begin{bmatrix} FAC \text{ species } 0 \\ FAC \text$	
5		= Tota	L Cover	$\begin{array}{c} 1 \text{ Not species} & 1 \\ 1 \text{ UPL species} & 0 & x 5 = 0 \end{array}$	
Herb Stratum (Plot size: 5 ft r)		1018	100461	Column Totals: 100 (A) 200 (B	3)
1. Phalaris arundinacea	100				~
2				Prevalence Index = B/A = 2.0	
3				Hydrophytic Vegetation Indicators:	
4				- 1 - Rapid Test for Hydrophytic Vegetation	
5				2 - 100000000000000000000000000000000000	
6				- S - Prevalence Index IS \$3.0"	
/				data in Remarks or on a separate sheet)	''y
o				Problematic Hydrophytic Vegetation ¹ (Explain)	
J				•	

¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 100% = Total Cover Woody Vine Stratum (Plot size: 30 ft r) 1. _____ Hydrophytic Vegetation 2. Yes ____ No _ Present? = Total Cover Remarks: (Include photo numbers here or on a separate sheet.) Small amounts of Typha angustifolia present at stormwater outlet

10. _____

Profile Desc	ription: (Describe	to the de	pth needed to docur	ment the	indicator	or confir	n the absence of ind	icators.)	
Depth	Matrix		Redo	x Featur	es				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	_Loc ²	Texture	Remarks	
0-5	10YR 4/2	95	10YR 5/8	5	<u> </u>	М	Clay Loam		
<u> </u>	10YR 4/1	100					Clay Loam		
<u>15 ⁻ 18</u>	10YR 5/1	60	10YR 5/4	40	<u> </u>	М	Sandy Clay Loam		
¹ Type: C=C	oncentration, D=Dep	letion, RM	I=Reduced Matrix, M	S=Maske	d Sand Gr	ains.	² Location: PL=F	Pore Lining, M=Matrix.	
Hydric Soil	Indicators:						Indicators for Pr	oblematic Hydric Soils ³ :	
Histosol	(A1)		Sandy (Gleyed M	latrix (S4)		Coast Prairie	Redox (A16)	
Histic Ep	oipedon (A2)		Sandy I	Redox (S	5)		Dark Surface	(S7)	
Black Hi	istic (A3)		Stripped	d Matrix (S6)		Iron-Manganese Masses (F12)		
Hydroge	en Sulfide (A4)		Loamy	Mucky M	ineral (F1)		Very Shallow Dark Surface (TF12)		
Stratified	d Layers (A5)		Loamy	Gleyed N	latrix (F2)		Other (Explai	n in Remarks)	
2 cm Mil	JCK (A1U) d Rolow Dark Surfac	(11)		o Matrix	(F3) (F6)				
Thick D	ark Surface (A12)	e (ATT)	Redox I	d Dark Sun	ace (FO) Jurface (F7	`	³ Indicators of byd	rophytic vegetation and	
Sandy M	Aucky Mineral (S1)		Deplete	Depressi	ons (F8)	,	wetland hydro	plogy must be present	
5 cm Mi	icky Peat or Peat (S:	3)		Depressi	0113 (1 0)		unless disturt	bed or problematic	
Restrictive	Layer (if observed):	,							
Type:	2								
Depth (in	ches):						Hydric Soil Prese	nt? Yes No	
Remarks:									
HYDROLO	GY								
Wetland Hy	drology Indicators:								
Primary India	cators (minimum of o	ne is requ	iired; check all that ap	oply)			Secondary Indi	cators (minimum of two required)	
Surface	Water (A1)		Water-Sta	ined Lea	ves (B9)		Surface So	oil Cracks (B6)	
High Wa	ater Table (A2)		Aquatic Fa	auna (B1	3)		🖌 Drainage F	Patterns (B10)	
Saturati	on (A3)		True Aqua	atic Plants	s (B14)		Dry-Seaso	n Water Table (C2)	
Water M	larks (B1)		Hydrogen	Sulfide C	Odor (C1)		Crayfish B	urrows (C8)	
Sedimer	nt Deposits (B2)		Oxidized F	Rhizosph	eres on Liv	ing Roots	(C3) Saturation	Visible on Aerial Imagery (C9)	

- ___ Presence of Reduced Iron (C4) ___ Stunted or Stressed Plants (D1)
- Recent Iron Reduction in Tilled Soils (C6)

Iron Deposits (B5)		Thin Muck Surface (C7)	 FAC-Neutral Test (D5) 		
Inundation Visible on Aerial Imagery (B7)		Gauge or Well Data (D9)			
Sparsely Vegetated Con-	cave Surface (B8)	Other (Explain in Remarks)			
Field Observations:					
Surface Water Present?	Yes 🖍 No _	Depth (inches): 16			
Water Table Present?	Yes No _	Depth (inches):			
Saturation Present? (includes capillary fringe)	Yes 🖍 No	Depth (inches): 13	Wetland Hydrology Present? Yes No		
Describe Recorded Data (stre	eam gauge, monito	oring well, aerial photos, previous inspec	tions), if available:		
Remarks:					

___ Drift Deposits (B3)

____ Algal Mat or Crust (B4)

Project/Site: HATCHi	City/County: Superior Charter Twp, Washtenaw	Sampling Date: 2021-10-06
Applicant/Owner: IBI Group	State: Michigan	Sampling Point: W3A-UPL
Investigator(s): J. DeMoss	Section, Township, Range: Section 32 T025	S R07E
Landform (hillslope, terrace, etc.): Outwash, Flat	Local relief (concave, convex, none):	None
Slope (%): 0 Lat: 42.2706938	Long: -83.6268705	Datum: WGS 84
Soil Map Unit Name: Hoytville silty clay loam (Ho)	NWI classific	_{ation:} None
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🔽 No (If no, explain in R	emarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstances" p	resent? Yes 🔽 No
Are Vegetation, Soil, or Hydrology naturally pre-	oblematic? (If needed, explain any answe	rs in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes No V Yes No V Yes No V	Is the Sampled Area within a Wetland?	Yes	No
Remarks:				

00 ft	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>30 ft r</u>)	% Cover	Species?	Status	Number of Dominant Species
1. Juglans nigra	35	<u> </u>	FACU	That Are OBL, FACW, or FAC: 3 (A)
2. Fraxinus americana	10		FACU	Total Number of Dominant
_{3.} Ulmus americana	10		FACW	Species Across All Strata: 6 (B)
4.				(-)
5.				Percent of Dominant Species
	55%	= Total Cov	/er	
Sapling/Shrub Stratum (Plot size: 15 ft r)				Prevalence Index worksheet:
1. Rhamnus cathartica	40	~	FAC	Total % Cover of:Multiply by:
2. Lonicera morrowii	10	~	FACU	OBL species 0 x 1 = 0
3.				FACW species 70 x 2 = 140
4.				FAC species 55 x 3 = 165
5.				FACU species 70 x 4 = 280
	50%	= Total Cov	/er	UPL species 25 $x_5 = 125$
Herb Stratum (Plot size: 5 ft r)		rotar oor		Column Totals: 220 (A) 710 (B)
1. Elymus virginicus	30	~	FACW	
2. Rubus occidentalis	25	~	UPL	Prevalence Index = B/A = <u>3.2</u>
3. Toxicodendron radicans	15		FAC	Hydrophytic Vegetation Indicators:
4. Parthenocissus quinquefolia	10		FACU	1 - Rapid Test for Hydrophytic Vegetation
5. Symphyotrichum lateriflorum	10		FACW	2 - Dominance Test is >50%
6. Cinna arundinacea	5		FACW	3 - Prevalence Index is ≤3.0 ¹
7. Rosa multiflora	5		FACU	4 - Morphological Adaptations ¹ (Provide supporting
8.				data in Remarks or on a separate sheet)
9.				Problematic Hydrophytic Vegetation ¹ (Explain)
10				
10	100%	- Total Cox		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft r)		- 10tai 00v		be present, unless disturbed or problematic.
1. Vitis riparia	15	~	FACW	Hydrophytic
2.				Vegetation
	15%	= Total Cov	/er	Present? Yes No
Remarks: (Include photo numbers here or on a separate s	sheet.)			1

Profile Desc	cription: (Describe	to the de	pth needed to docu	ment the	indicator	or confirm	n the absence of ind	licators.)		
Depth	Matrix		Redo	ox Feature	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0 - 14	10YR 4/1	100					Clay Loam			
<u>14 ⁻ 18</u>	10YR 5/1	95	10YR 5/4	5	<u> </u>	М	Clay Loam			
-										
-										
-										
'Type: C=C	oncentration, D=De	pletion, RN	/I=Reduced Matrix, M	S=Maske	d Sand Gr	ains.	² Location: PL=	Pore Lining, M=Matrix.		
Hydric Soil	Indicators:						Indicators for Pr	roblematic Hydric Solls :		
Histosol	l (A1)		Sandy	Gleyed M	atrix (S4)		Coast Prairie	e Redox (A16)		
Block H	pipedon (AZ)		Sandy	d Motrix (5) 56)		Dark Surface	e (57)		
	Suc(AS)			Mucky Mi	ineral (E1)		Iron-Manganese Masses (F12)			
Stratified	d Lavers (A5)		Loamy	Gleved M	latrix (F2)		Other (Explain in Remarks)			
2 cm Mi	uck (A10)		Deplete	ed Matrix	(F3)			in in Konano)		
Deplete	d Below Dark Surfac	ce (A11)	Redox	Dark Surf	face (F6)					
Thick Da	ark Surface (A12)	()	Deplete	ed Dark S	urface (F7)	³ Indicators of hyd	³ Indicators of hydrophytic vegetation and		
Sandy M	Aucky Mineral (S1)		Redox	Depressio	ons (F8)		wetland hydrology must be present,			
5 cm Mu	ucky Peat or Peat (S	3)					unless distur	bed or problematic.		
Restrictive	Layer (if observed)	:								
Type:							Undria Call Dread			
Depth (in	ches):						Hydric Soll Prese			
Remarks:							1			
HYDROLO	GY									
Wetland Hy	drology Indicators	:								
Primary Indi	cators (minimum of	one is requ	uired; check all that a	pply)			Secondary Ind	icators (minimum of two required)		
Surface	Water (A1)		Water-Sta	ined Lea	ves (B9)		Surface So	oil Cracks (B6)		
High Wa	ater Table (A2)		Aquatic Fa	auna (B13	3)		Drainage I	Patterns (B10)		
Saturati	on (A3)		True Aqua	atic Plants	s (B14)		Dry-Seaso	on Water Table (C2)		
Water M	larks (B1)		Hydrogen	Sulfide C	dor (C1)		Crayfish B	Burrows (C8)		
Sedime	nt Deposits (B2)		Oxidized I	Rhizosph	eres on Liv	ing Roots	(C3) Saturation	Visible on Aerial Imagery (C9)		
Drift Deposits (B3)						Stunted or	Stressed Plants (D1)			

 Diy-	06	a	SOII	vvale	•	ab	ie

- ___ Crayfish Burrows (C8)
- ____ Oxidized Rhizospheres on Living Roots (C3) ____ Saturation Visible on Aerial Imagery (C9)
 - ____ Stunted or Stressed Plants (D1)

Algal Mat or Crust (B4)		Recent Iron Reduction in Tilled So	ils (C6) <u>V</u> Geomorphic Position (D2)		
Iron Deposits (B5)		Thin Muck Surface (C7) FAC-Neutral Test (D5)			
Inundation Visible on Aeri	al Imagery (B7)	Gauge or Well Data (D9)			
Sparsely Vegetated Conc	ave Surface (B8)	Other (Explain in Remarks)			
Field Observations:					
Surface Water Present?	Yes No _	Depth (inches):			
Water Table Present?	Yes 🖌 No _	Depth (inches): <u>16</u>			
Saturation Present? (includes capillary fringe)	Yes 🖌 No _	Depth (inches): <u>13</u>	Wetland Hydrology Present? Yes No		
Describe Recorded Data (stre	am gauge, monito	oring well, aerial photos, previous inspect	tions), if available:		
Remarks:					

Presence of Reduced Iron (C4)

____ Drift Deposits (B3)

Project/Site: HATCHi	City/County: Superior Charter Twp, Washtenaw Sampling Date: 202	1-10-06		
Applicant/Owner: IBI Group	State: Michigan Sampling Point: W4A	-SP		
Investigator(s): J. DeMoss	_ Section, Township, Range: Section 32 T02S R07E			
Landform (hillslope, terrace, etc.): Basin	Local relief (concave, convex, none): None			
Slope (%): 0 Lat: 42.2700699	Long: -83.6261552 Datum: WGS 84			
Soil Map Unit Name: Hoytville silty clay loam (Ho)	NWI classification: None			
Are climatic / hydrologic conditions on the site typical for this time of ye	year? Yes 🗾 No (If no, explain in Remarks.)			
Are Vegetation, Soil, or Hydrology significantly	ly disturbed? Are "Normal Circumstances" present? Yes	No		
Are Vegetation, Soil, or Hydrology naturally pr	problematic? (If needed, explain any answers in Remarks.)			
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.				

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes <u>V</u> No Yes <u>V</u> No Yes <u>V</u> No	Is the Sampled Area within a Wetland? Yes V
Remarks:		

20 ft -	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1. Ulmus americana	_ <u>10</u>	<u> </u>	FACW	That Are OBL, FACW, or FAC: 3 (A)
2. Juglans nigra	5	<u> </u>	FACU	Total Number of Demission
3.				Species Across All Strata: 4 (B)
A.				
4				Percent of Dominant Species
5	450/			That Are OBL, FACW, or FAC: 75 (A/B)
Combine (Charth Charthan (Charthain) 15 ft r	15%	= Total Cov	er	Provolonce Index worksheet:
Sapling/Shrub Stratum (Plot size:)	40			
	- 40		FACW	I otal % Cover of: Multiply by:
2				OBL species <u>5</u> x 1 = <u>5</u>
3				FACW species 140 x 2 = 280
4.				FAC species 5 x 3 = 15
5				FACU species $5 \times 4 = 20$
	40%			$\frac{1}{1}$
Herb Stratum (Plot size: 5 ft r)	40%	= Total Cov	ver	$\frac{1}{1}$
Phalaris arundinacea	90	~	FACW	Column Totals: 133 (A) 320 (B)
			EAC	Prevalence Index = R/A = 2.1
	- 5			
3. Carex stricta			OBL	Hydrophytic Vegetation Indicators:
4				1 - Rapid Test for Hydrophytic Vegetation
5				✓ 2 - Dominance Test is >50%
6.				✓ 3 - Prevalence Index is ≤3.0 ¹
7				4 - Morphological Adaptations ¹ (Provide supporting
·	·			data in Remarks or on a separate sheet)
o				Problematic Hydrophytic Vegetation ¹ (Explain)
9				
10				¹ Indicators of hydric soil and watland hydrology must
				Indicators of figure son and wetland figurology must
20.41	100%	= Total Cov	/er	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size: 30 ft r)	100%	= Total Cov	ver	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size: 30 ft r)	100%	= Total Cov	/er	be present, unless disturbed or problematic.
<u>Woody Vine Stratum</u> (Plot size: <u>30 ft r</u>) 1 2	<u>100%</u>	= Total Cov	/er	be present, unless disturbed or problematic. Hydrophytic Vegetation
Woody Vine Stratum (Plot size: _30 ft r) 1 2	<u>100%</u>	= Total Cov	/er	be present, unless disturbed or problematic. Hydrophytic Vegetation Present? Yes No
Woody Vine Stratum (Plot size: <u>30 ft r</u>) 1 2 Remarks: (Include photo numbers here or on a separate se	<u>100%</u>	= Total Cov = Total Cov	ver ver	be present, unless disturbed or problematic. Hydrophytic Vegetation Present? Yes No
Woody Vine Stratum (Plot size: 30 ft r) 1. 2. Remarks: (Include photo numbers here or on a separate separ	<u>100%</u>	= Total Cov	ver	be present, unless disturbed or problematic. Hydrophytic Vegetation Present? Yes No

Profile Desc	cription: (Describe	to the depth	needed to docur	nent the	indicator	or confir	m the absence	of indicators.)
Depth	Matrix		Redo	x Feature	s Turna 1	1	Tarta	Demok
			Color (moist)	%	_Type	LOC [_]		Remarks
	10 f R 4/1							
<u>10 ⁻ 18</u>	10YR 5/1	<u> 75 </u>	0YR 5/6	25	<u> </u>	M	Clay Loam	
-								
-								
——					·			
1							2	
Hydric Soil	oncentration, D=Dep	pletion, RM=R	educed Matrix, M	S=Masked	d Sand Gr	ains.	Location	: PL=Pore Lining, M=Matrix.
Historol	(A1)		Sandy	Cloved Mr	atrix (SA)		Coast	Prairie Redex (A16)
Histic Fr	(AT) ninedon (A2)		Sandy G	Redox (SF	aunx (34) 5)		Coast r	Fraine Redox (ATO)
Black Hi	istic (A3)		Stripped	d Matrix (S	56)		Iron-Ma	anganese Masses (F12)
Hydroge	en Sulfide (A4)		Loamy	Mucky Mi	neral (F1)		Very S	hallow Dark Surface (TF12)
Stratified	d Layers (A5)		Loamy	Gleyed M	atrix (F2)		Other ((Explain in Remarks)
2 cm Mu	uck (A10)		 Deplete 	d Matrix (F3)			
Deplete	d Below Dark Surfac	ce (A11)	Redox I	Dark Surfa	ace (F6)		31	of hundred hundred and a start in the second
Thick Da	ark Surface (A12)		Deplete	a Dark Su Depressio	IFACE (F7))	Indicators	of hydrophytic vegetation and
5 cm Mi	Sandy Mucky Mineral (S1) Redox Depressions (F8)				unless	disturbed or problematic.		
Restrictive	Layer (if observed)	:						
Type:								
Depth (in	ches):		_				Hydric Soil	Present? Yes No
Remarks:								
HYDROLO	GY							
Wetland Hy	drology Indicators	:						
Primary India	cators (minimum of	one is required	t; check all that an	(ylq			Seconda	ry Indicators (minimum of two required)
Surface	Water (A1)		Water-Sta	ined Leav	res (B9)		Surfa	ace Soil Cracks (B6)
High Wa	ater Table (A2)		Aquatic Fa	auna (B13	5)		Draii	nage Patterns (B10)
🖌 Saturatio	on (A3)		True Aqua	tic Plants	(B14)		Dry-	Season Water Table (C2)
Water M	larks (B1)		Hydrogen	Sulfide O	dor (C1)		Cray	/fish Burrows (C8)
Sedimer	nt Deposits (B2)		Oxidized F	Rhizosphe	eres on Liv	ing Roots	(C3) Satu	ration Visible on Aerial Imagery (C9)
Drift De	posits (B3)		Presence	of Reduce	ed Iron (C4	4)	Stun	ted or Stressed Plants (D1)
Algal Ma	at or Crust (B4)		Recent Iro	n Reducti	ion in Tille	d Soils (C	6) 🖌 Geo	morphic Position (D2)
Iron Dep	posits (B5)		Thin Muck	Surface	(C7)		🖌 FAC	-Neutral Test (D5)
Inundati	on Visible on Aerial	Imagery (B7)	Gauge or	Well Data	(D9)			
Sparsely	y Vegetated Concav	e Surface (B8) Other (Exp	olain in Re	emarks)			

Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)						
Field Observations:						
Surface Water Present?	Yes	No 🔽	_ Depth (inches):			
Water Table Present?	Yes 🖌	No	_ Depth (inches): <u>12</u>			
Saturation Present? (includes capillary fringe)	Yes 🖌	No	_ Depth (inches): 9	Wetland Hydrology Present?	Yes 🗹	No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:						
Remarks:						

Project/Site: HATCHi	City/County: Superior Charter Twp, Washtenaw	Sampling Date: 2021-10-06
Applicant/Owner: IBI Group	State: Michigan	Sampling Point: W4A-UPL
Investigator(s): J. DeMoss	Section, Township, Range: Section 32 T02S	\$ R07E
Landform (hillslope, terrace, etc.): Hillslope	Local relief (concave, convex, none):	None
Slope (%): <u>1</u> Lat: <u>42.2700680</u>	Long:83.6263776	Datum: WGS 84
Soil Map Unit Name: Hoytville silty clay loam (Ho)	NWI classifica	ation: None
Are climatic / hydrologic conditions on the site typical for this time of ye	ar? Yes 🗾 No (If no, explain in Re	emarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstances" pr	resent? Yes 🔽 No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any answer	rs in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes No V Yes No V Yes No V	Is the Sampled Area within a Wetland?	Yes	No
Remarks:				

00 ft -	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1. Juglans nigra		<u> </u>	FACU	That Are OBL, FACW, or FAC: <u>3</u> (A)
2. Acer negundo	5	 ✓ 	FAC	
3				Total Number of Dominant Species Across All Strate: 7 (P)
				Species Across Air Strata (B)
4				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: 43 (A/B)
15 ft r	25%	= Total Cov	er	
Sapling/Shrub Stratum (Plot size:)				Prevalence index worksheet:
1. Rhamnus cathartica	_ <u>40</u>	<u> </u>	FAC	Total % Cover of:Multiply by:
2. Lonicera maackii	25	<u> </u>	UPL	OBL species 0 x 1 = 0
3.				FACW species 10 x 2 = 20
Λ				FAC species $50 \times 3 = 150$
				EACH appearing $\frac{20}{20}$ x 4 = $\frac{80}{80}$
5	05.0/			$\begin{array}{c} x_{4} = 0 \\ \overline{55} \\ 5$
Hart Strature (Plataine, 5 ft r	65%	= Total Cov	er	UPL species <u>35</u> x 5 = <u>275</u>
Public occidentalic	20		IIDI	Column Totals: 135 (A) 525 (B)
	- 20			20
2. Lonicera maackii	10	<u> </u>	UPL	Prevalence Index = B/A = 3.9
3. Geum canadense	5		FAC	Hydrophytic Vegetation Indicators:
4.				1 - Rapid Test for Hydrophytic Vegetation
5				2 - Dominance Test is >50%
6				3 - Prevalence Index is < 3.01
b				0 Prevalence index to 20.0
7				data in Remarks or on a separate sheet)
8				Broblomatic Hydrophytic Vogetation ¹ (Evaluin)
9				
10.				
	35%	= Total Cov	er	Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft r		10101 001		be present, unless disturbed or problematic.
1 Vitis riparia	10	~	FACW	Ludrophy tio
2				Vegetation
۷	10%			Present? Yes No
	10 %	= Total Cov	er	
Remarks: (Include photo numbers here or on a separate	sheet.)			

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)							
Depth Matrix	Redox Features	S					
(inches) Color (moist) %	Color (moist) %	Type ¹ Loc ²	Texture Remarks				
<u>0-8</u> <u>10YR 4/1</u> <u>100</u>			Clay Loam				
8 - 18 10YR 4/1 50	7.5YR 5/8 50	С М	Clay Loam				
-							
¹ Type: C=Concentration, D=Depletion, RM	=Reduced Matrix, MS=Masked	Sand Grains.	² Location: PL=Pore Lining, M=Matrix.				
Hydric Soil Indicators:			Indicators for Problematic Hydric Soils':				
Histosol (A1)	Sandy Gleyed Ma	trix (S4)	Coast Prairie Redox (A16)				
Histic Epipedon (A2)	Sandy Redox (S5)	Dark Surface (S7)				
Black Histic (A3)	Stripped Matrix (S	66)	Iron-Manganese Masses (F12)				
Hydrogen Sulfide (A4)	Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1)						
Stratified Layers (A5)	Loamy Gleyed Ma	atrix (F2)	Other (Explain in Remarks)				
2 cm Muck (A10)	Depleted Matrix (F	=3)					
Depleted Below Dark Surface (A11)	Redox Dark Surfa	ice (F6)					
Thick Dark Surface (A12)	Depleted Dark Su	rface (F7)	³ Indicators of hydrophytic vegetation and				
Sandy Mucky Mineral (S1)	Redox Depression	ns (F8)	wetland hydrology must be present,				
5 cm Mucky Peat or Peat (S3)			unless disturbed or problematic.				
Restrictive Layer (if observed):							
Туре:			Hydric Soil Present? Ves No V				
Depth (inches):							
Remarks:							
HYDROLOGY							
Wetland Hydrology Indicators:							
Primary Indicators (minimum of one is requi	red; check all that apply)		Secondary Indicators (minimum of two required)				
Surface Water (A1)	Water-Stained Leave	es (B9)	Surface Soil Cracks (B6)				
I							

Wetland Hydrology Indicators:	
Primary Indicators (minimum of one is required; check all that apply)	Secondary Indicators (minimum of two required)
	 Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No Depth (inches):	
Water Table Present? Yes No Depth (inches):	
Saturation Present? Yes No Depth (inches): Wetland (includes capillary fringe)	Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if a	vailable:
Remarks:	

Project/Site: HATCHi	City/County: Superior Charter Tw	p, Washtenaw Sampling	Date: 2021-10-06
Applicant/Owner: IBI Group	Sta	ate: Michigan Sampling	Point: W5A-SP
Investigator(s): J. DeMoss	Section, Township, Range: Sec	tion 32 T02S R07E	
Landform (hillslope, terrace, etc.): Ditch	Local relief (concave,	convex, none): None	
Slope (%): 0 Lat: 42.2692637	Long: -83.6236640	Datum: _W	/GS 84
Soil Map Unit Name: Kendallville loam, 2 to 6 percent slope	s (KeB)	_ NWI classification: Nor	ne
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🖌 No (If	no, explain in Remarks.)	
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal C	ircumstances" present? Y	es 🔽 No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, exp	olain any answers in Rema	rks.)
SUMMARY OF FINDINGS – Attach site map showing	sampling point location	s, transects, importa	ant features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes <u>'</u> No Yes <u>'</u> No Yes <u>'</u> No	Is the Sampled Area within a Wetland? Yes <u> </u>
Remarks:		

00 ft	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: <u>3</u> (A)
2				Total Number of Dominant
3				Species Across All Strata: <u>3</u> (B)
4				
5				Percent of Dominant Species That Are OBL_EACW_or_EAC: 100 (A/B)
		= Total Co	ver	
Sapling/Shrub Stratum (Plot size: 15 ft r)				Prevalence Index worksheet:
1				Total % Cover of:Multiply by:
2				OBL species <u>40</u> x 1 = <u>40</u>
3.				FACW species <u>25</u> x 2 = <u>50</u>
4.				FAC species _30 x 3 = _90
5.				FACU species 5 $x_4 = 20$
		= Total Co	ver.	UPL species 0 x 5 = 0
Herb Stratum (Plot size: <u>5 ft r</u>)		10101 00		Column Totals: 100 (A) 200 (B)
_{1.} Typha angustifolia	30	<u> </u>	OBL	
2. Carex vulpinoidea	25	<u> </u>	FACW	Prevalence Index = B/A = 2.0
3. Juncus tenuis	25	 ✓ 	FAC	Hydrophytic Vegetation Indicators:
4. Lythrum salicaria	10		OBL	1 - Rapid Test for Hydrophytic Vegetation
5. Dipsacus fullonum	5		FACU	✓ 2 - Dominance Test is >50%
6. Populus deltoides	5		FAC	\checkmark 3 - Prevalence Index is ≤3.0 ¹
7.				4 - Morphological Adaptations ¹ (Provide supporting
8.				data in Remarks or on a separate sheet)
9.				Problematic Hydrophytic Vegetation (Explain)
10.				
	100%	= Total Co	ver	¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft r)				be present, unless disturbed or problematic.
1				Hydrophytic
2				Vegetation
		= Total Co	ver	Present? Yes No
Remarks: (Include photo numbers here or on a separate s	sheet.)			

Profile Des	cription: (Describe	e to the de	pth needed to docu	ment the	e indicator	or confir	m the absence o	f indicators.)
Depth (inches)	Color (moist)	%	Red	ox Featur %	Type ¹		- Texture	Remarks
0 - 18	10YR 5/2	90	7 5YR 5/8	10	_ <u></u> C	<u></u>	Clav Loam	Kemarks
	1011(0/2		7.011(0/0					
-								
-								
-								
<u> </u>								
-								
'Type: C=C	Concentration, D=De	pletion, RI	M=Reduced Matrix, N	IS=Maske	ed Sand Gr	ains.	² Location:	PL=Pore Lining, M=Matrix.
Hydric Soll	Indicators:		0				Indicators fo	or Problematic Hydric Solls :
HISTOSO	ningdon (A2)		Sandy	Gleyed N	atrix (S4)		Coast Pi	fane (SZ)
Black H	listic (A3)		Sanuy	d Matrix	(S6)		Dark Su	nace (S7)
Hvdrog	en Sulfide (A4)		Loamv	Loamy Mucky Mineral (E1)		Verv Sh	allow Dark Surface (TF12)	
Stratifie	ed Layers (A5)		Loamy	Loamy Gleved Matrix (F2)		Other (E	xplain in Remarks)	
2 cm M	uck (A10)		✓ Deplet	ed Matrix	(F3)			
Deplete	ed Below Dark Surfa	ce (A11)	Redox	Dark Sur	face (F6)			
Thick D	ark Surface (A12)		Deplet	ed Dark S	Surface (F7)	³ Indicators o	f hydrophytic vegetation and
Sandy	Mucky Mineral (S1)	20)	Redox	Depressi	ons (F8)		wetland	hydrology must be present,
5 cm M	Lavor (if observed	53) 1.					uniess a	isturbed or problematic.
Tunoi	Layer (II Observed).						
Type:							Hydric Soil P	resent? Yes No
Depth (ir	nches):							
Remarks:								
HYDROLC	DGY							
Wetland Hy	drology Indicators	:						
Primary Ind	icators (minimum of	one is req	uired; check all that a	pply)			Secondary	/ Indicators (minimum of two required)
🖌 🖌 Surface	e Water (A1)		Water-Sta	ained Lea	ives (B9)		Surfac	ce Soil Cracks (B6)
🖌 🖌 High W	ater Table (A2)		Aquatic F	auna (B1	3)		🖌 Draina	age Patterns (B10)
🖌 🖌 Saturat	ion (A3)		True Aqu	atic Plant	s (B14)		Dry-S	eason Water Table (C2)
Water M	Marks (B1)		Hydroger	n Sulfide (Odor (C1)		Crayfi	sh Burrows (C8)
Sedime	ent Deposits (B2)		Oxidized Rhizospheres on Living Roots			ing Roots	s (C3) Satura	ation Visible on Aerial Imagery (C9)

- Oxidized Rhizospheres on Living Roots (C3) ____ Saturation Visible on Aerial Imagery (C9)
 - Stunted or Stressed Plants (D1)

Drift Deposits (B3)		Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
✓ Algal Mat or Crust (B4)		Recent Iron Reduction in Tilled \$	Soils (C6) 🖉 Geomorphic Position (D2)
Iron Deposits (B5)		Thin Muck Surface (C7)	 FAC-Neutral Test (D5)
Inundation Visible on Aeri	al Imagery (B7)	Gauge or Well Data (D9)	
Sparsely Vegetated Conc	ave Surface (B8)	Other (Explain in Remarks)	
Field Observations:			
Surface Water Present?	Yes 🖌 No _	Depth (inches): 1	_
Water Table Present?	Ves 🗸 No	Depth (inches): 0	
Water Table Fresent?	163 140 _	Deptil (illelies).	-
Saturation Present? (includes capillary fringe)	Yes <u>V</u> No	Depth (inches): 0	└ Wetland Hydrology Present? Yes └ No
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes <u>No</u> No _	ring well, aerial photos, previous inspe	Wetland Hydrology Present? Yes <u>V</u> No ections), if available:
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre	Yes <u>V</u> No am gauge, monito	ring well, aerial photos, previous inspe	Wetland Hydrology Present? Yes <u>V</u> No ections), if available:
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes <u></u> No <u></u> No <u></u>	Depth (inches): 0	Wetland Hydrology Present? Yes <u>V</u> No ections), if available:
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes <u>v</u> No am gauge, monito	Depth (inches): Depth (inches): O ring well, aerial photos, previous inspe	Wetland Hydrology Present? Yes <u>V</u> No ections), if available:
Saturation Present? (includes capillary fringe) Describe Recorded Data (stre Remarks:	Yes <u></u> No _	ring well, aerial photos, previous inspe	Wetland Hydrology Present? Yes <u>V</u> No ections), if available:

Project/Site: HATCHi	City/County: Super	ior Charter Twp, Washtenaw	Sampling Date: 2021-10-06
Applicant/Owner: IBI Group		State: Michigan	Sampling Point: W5A-UPL
Investigator(s): J. DeMoss	Section, Township,	Range: Section 32 T02	S R07E
Landform (hillslope, terrace, etc.): Hillslope	Local re	elief (concave, convex, none):	None
Slope (%): 2 Lat: 42.2694654	Long: -83.6236	170	Datum: WGS 84
Soil Map Unit Name: Kendallville loam, 2 to 6 percent slope	s (KeB)	NWI classific	ation: None
Are climatic / hydrologic conditions on the site typical for this time of ye	ear?Yes 🔽 N	lo (If no, explain in R	emarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? A	Are "Normal Circumstances" p	present? Yes 🔽 No
Are Vegetation, Soil, or Hydrology naturally pre-	oblematic? (If needed, explain any answe	rs in Remarks.)
		the set is a transferred	in a stant facture of the

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes No V Yes No V Yes No V	ls the Sampled Area within a Wetland?	Yes No
Remarks:			

20 ft	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 0 (A)
2				Total Number of Dominant
3				Species Across All Strata: 2 (B)
4.				
5				Percent of Dominant Species
···		= Total Cov		That Are OBL, FACW, of FAC: 0 (A/B)
Sapling/Shrub Stratum (Plot size: 15 ft r)		- 10(a) 001		Prevalence Index worksheet:
1. Elaeagnus umbellata	5	~	UPL	Total % Cover of:Multiply by:
2.				OBL species 0 x 1 = 0
3				FACW species 0 x 2 = 0
Λ				EAC species 0 x 3 = 0
	·			EACLI species 100 $x_4 = 400$
o	E%			$\frac{1}{100} \text{ species} \frac{5}{5} \text{ species} \frac{5}{5} = \frac{25}{5}$
Herb Stratum (Plot size: 5 ft r)	5%	= Total Cov	ver	$\frac{105}{105}$
1 Festuca rubra	90	~	FACU	$\begin{bmatrix} \text{Column rotals:} & 100 \\ \hline & \text{(A)} & 120 \\ \hline & \text{(B)} \end{bmatrix}$
2 Cirsium arvense	5		FACU	Prevalence Index = $B/A = 4.0$
3 Dipsacus fullonum	5		FACU	Hydrophytic Vegetation Indicators:
A.	·			1 - Rapid Test for Hydrophytic Vegetation
4	·			2 - Dominance Test is >50%
5	·			$\frac{2}{3} = \frac{1}{2} = \frac{1}$
6	·			0 - Hevalence index is ±0.0
7	·			data in Remarks or on a separate sheet)
8				Problematic Hydrophytic Vegetation ¹ (Explain)
9	·			
10				¹ Indicators of hydric soil and watland hydrology must
20.41 -	100%	= Total Cov	ver	be present, unless disturbed or problematic.
Woody Vine Stratum (Plot size: 30 It I)				······································
1	·			Hydrophytic
2				Vegetation
		= Total Cov	/er	
Remarks: (Include photo numbers here or on a separate s	sheet.)			

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)								
Depth	Matrix		Redox	x Feature	s			
(inches)	Color (moist)	%	Color (moist)	%	_Type ¹	Loc ²	Texture Remarks	
0-6	10YR 4/2	100					Clay Loam	
<u> </u>	10YR 4/2	25	7.5YR 5/6	75	<u> </u>	<u>M</u>	Sandy Clay Loam	
<u> </u>	10YR 4/1	50	10YR 5/3	50	С	Μ	Sandy Clay Loam	
-								
-								
		lotion PM		Maskar	A Sand Gr		² Location: PL=Pore Liping M=Metrix	
Hydric Soil	Indicators:				a Sanu Gr	ams.	Indicators for Problematic Hydric Soils ³ :	
Histosol	(A1)		Sandy G	Bleved Ma	atrix (S4)		Coast Prairie Redox (A16)	
Histic Ep	pipedon (A2)		Sandy R	Redox (S5	5)		Dark Surface (S7)	
Black Hi	stic (A3)		Stripped	Matrix (S	56)		Iron-Manganese Masses (F12)	
Hydroge	n Sulfide (A4)		Loamy M	Loamy Mucky Mineral (F1)			Very Shallow Dark Surface (TF12)	
Stratified	d Layers (A5)		Loamy Gleyed Matrix (F2)			Other (Explain in Remarks)		
2 cm Mu	ıck (A10)		Depleted	d Matrix (F3)			
Depleted	d Below Dark Surface	e (A11)	Redox D	ark Surfa	ace (F6)			
Thick Da	ark Surface (A12)		Depleted	d Dark Su	urface (F7))	³ Indicators of hydrophytic vegetation and	
Sandy M	lucky Mineral (S1)		Redox D	epressio	ns (F8)		wetland hydrology must be present,	
5 cm Mu	5 cm Mucky Peat or Peat (S3)		unless disturbed or problematic.					
Restrictive I	_ayer (if observed):							
Туре:							Hudrie Seil Dresent? Vee No.	
Depth (ind	ches):						Hydric Soll Present? res No	
Remarks:								
HYDROLO	GY							
Wetland Hy	drology Indicators:							
Primary Indic	ators (minimum of o	ne is requ	ired; check all that ap	ply)			Secondary Indicators (minimum of two required)	
Surface	Water (A1)		Water-Stained Leaves (B9)				Surface Soil Cracks (B6)	

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one is required; che	eck all that apply)	Secondary Indicators (minimum of two required)
Surface Water (A1)	_ Water-Stained Leaves (B9)	Surface Soil Cracks (B6)
High Water Table (A2)	_ Aquatic Fauna (B13)	Drainage Patterns (B10)
Saturation (A3)	_ True Aquatic Plants (B14)	Dry-Season Water Table (C2)
Water Marks (B1)	_ Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2)	_ Oxidized Rhizospheres on Living Ro	oots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	_ Recent Iron Reduction in Tilled Soils	s (C6) Geomorphic Position (D2)
Iron Deposits (B5)	_ Thin Muck Surface (C7)	FAC-Neutral Test (D5)
Inundation Visible on Aerial Imagery (B7)	_ Gauge or Well Data (D9)	
Sparsely Vegetated Concave Surface (B8)	Other (Explain in Remarks)	
Field Observations:		
Surface Water Present? Yes No	Depth (inches):	
Water Table Present? Yes No	Depth (inches):	
Saturation Present? Yes No _ - (includes capillary fringe)	Depth (inches): N	Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring	well, aerial photos, previous inspectic	ns), if available:
Remarks:		

Project/Site: HATCHi	City/County: Superior Charter Twp, Washte	enaw Sampling Date: 2021-10-22
Applicant/Owner: IBI Group	State: Mich	igan Sampling Point: W6A-SP
Investigator(s): J. DeMoss	Section, Township, Range: Section 32	T02S R07E
Landform (hillslope, terrace, etc.): Outwash	Local relief (concave, convex, r	none): None
Slope (%): 0 Lat: 42.2678443	Long: -83.6232091	Datum: WGS 84
Soil Map Unit Name: Hoytville silty clay loam (Ho)	NWI cl	assification: None
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🗾 No (If no, explai	in in Remarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstan	ices" present? Yes 🔽 No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any a	answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing	sampling point locations, trans	ects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes V No Yes V No Yes V No	Is the Sampled Area within a Wetland? Yes No
Remarks:		

00 ft	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft r)	% Cover	Species?	Status	Number of Dominant Species
1. Rhamnus cathartica	20	<u> </u>	FAC	That Are OBL, FACW, or FAC: 8 (A)
2. Acer negundo	15	 ✓ 	FAC	Total Number of Deminent
_{3.} Salix X fragilis	15	 ✓ 	FAC	Species Across All Strata; 8 (B)
4.				(-)
5.				Percent of Dominant Species
	50%	= Total Cov	er	
Sapling/Shrub Stratum (Plot size: 15 ft r)		- 10(a) 001		Prevalence Index worksheet:
1. Rhamnus cathartica	10	~	FAC	Total % Cover of:Multiply by:
2.				OBL species <u>10</u> x 1 = <u>10</u>
3.				FACW species 5 $x_2 = 10$
4				FAC species 90 x 3 = 270
5	·			FACU species 0 x 4 = 0
···	10%	= Total Cov		UPL species 0 x 5 = 0
Herb Stratum (Plot size: 5 ft r)	1070	- 10tai 00v		Column Totals: 105 (A) 290 (B)
1. Symphyotrichum lanceolatum	15	~	FAC	
2. Toxicodendron radicans	15	~	FAC	Prevalence Index = $B/A = 2.8$
3. Glyceria striata	10	~	OBL	Hydrophytic Vegetation Indicators:
4.				1 - Rapid Test for Hydrophytic Vegetation
5.				✓ 2 - Dominance Test is >50%
6.				✓ 3 - Prevalence Index is ≤3.0 ¹
7.				4 - Morphological Adaptations ¹ (Provide supporting
8	·			data in Remarks or on a separate sheet)
9				Problematic Hydrophytic Vegetation ¹ (Explain)
10				
10	40%	- Total Car		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft r)		- 10tai C0V		be present, unless disturbed or problematic.
1. Vitis riparia	5	~	FACW	Hydrophytic
2.				Vegetation
	5%	= Total Cov	/er	Present? Yes No No
Remarks: (Include photo numbers here or on a separate	sheet.)			1
	,			

Dopth	Motrix	•	Pode	ov Eostur				,
(inches)	Color (moist)	%	Color (moist)	<u>% reature</u>	Tvpe ¹	Loc ²	Texture	Remarks
0 - 12	10YR 4/2	95	7.5YR 5/8	5	C	PL/M	Silty Clay Loam	
12 ⁻ 18	10YR 4/1	95	7.5YR 5/8	5	c	M	Silty Clay Loam	
-								
¹ Type: C=Ce	oncentration, D=Deple	etion, RM=	Reduced Matrix, M	S=Maske	d Sand Gr	ains.	² Location	PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:						Indicators	for Problematic Hydric Soils':
Histosol	(A1)		Sandy	Gleyed M	atrix (S4)		Coast I	Prairie Redox (A16)
Histic Ep	bipedon (A2)		Sandy	Redox (S	5)		Dark Surface (S7)	
Black Hi	STIC (A3)		Strippe	d Musky Mi	S6)		Iron-Manganese Masses (F12)	
Hydroge			Loamy	Gloved M	Ineral (F1)		Very Shallow Dark Surface (TFT2)	
Stratified Layers (A5) Loamy Gleyed Matrix (F2)								
Depleter	d Below Dark Surface	(A11)	Redox	Dark Surf	ace (F6)			
Thick Dark Surface (A12) Depleted Dark Surface (F7)					³ Indicators	of hydrophytic vegetation and		
Sandy Mucky Mineral (S1) Redox Depressions (F8)				wetland hydrology must be present,				
5 cm Mucky Peat or Peat (S3)				unless	disturbed or problematic.			
Restrictive I	Layer (if observed):							
Туре:								
Depth (in	ches):						Hydric Soil	Present? Yes No
Demerlier							1	
Remarks:								
Remarks:								
Remarks:								
Remarks:								
Remarks.								
Remarks:	GY							
HYDROLO Wetland Hyd	GY drology Indicators:							
HYDROLO Wetland Hyo Primary Indic	GY drology Indicators: cators (minimum of or	ne is requir	ed; check all that a	pply)			Seconda	ry Indicators (minimum of two required)
HYDROLO Wetland Hyd Primary India Surface	GY drology Indicators: cators (minimum of or Water (A1)	ne is requir	<u>ed∶ check all that a</u> Water-Sta	pply)	ves (B9)		<u>Seconda</u> Sufi	ry Indicators (minimum of two required) ace Soil Cracks (B6)
HYDROLO Wetland Hyd Primary India Surface ¥ High Wa	GY drology Indicators: cators (minimum of or Water (A1) ater Table (A2)	ne is requir	<u>ed: check all that a</u> Water-Sta Aquatic F	pply) ained Leav	ves (B9)		<u>Seconda</u> Surf: ✔ Draii	ry Indicators (minimum of two required) ace Soil Cracks (B6) nace Patterns (B10)
HYDROLO Wetland Hyd Primary India Surface High Wa	GY drology Indicators: cators (minimum of or Water (A1) ater Table (A2) on (A3)	ne is requir	ed: check all that a Water-Sta Aquatic F True Aquat	pply) ained Leav auna (B13 atic Plants	ves (B9) 3) s (B14)		<u>Seconda</u> Sufa Drai Drai	<u>ry Indicators (minimum of two required)</u> ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2)
HYDROLO Wetland Hyd Primary India Surface High Wa Saturatia Water M	GY drology Indicators: cators (minimum of or Water (A1) tter Table (A2) on (A3) larks (B1)	ne is requir	ed; check all that a Water-Sta Aquatic F True Aqua Hvdrogen	pply) ained Leav auna (B13 atic Plants Sulfide C	ves (B9) 3) s (B14) Odor (C1)		<u>Seconda</u> Surfi Drai Dry- Crav	<u>ry Indicators (minimum of two required)</u> ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8)
HYDROLO Wetland Hyd Primary India Surface High Wa Saturatia Water M Sedimer	GY drology Indicators: cators (minimum of or Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2)	ne is requir	ed: check all that a Water-Sta Aquatic F True Aqua Hydrogen Oxidized	pply) ained Leav auna (B13 atic Plants Sulfide C Rhizosphe	ves (B9) 3) s (B14) Ddor (C1) eres on Liv	ing Roots	<u>Seconda</u> Surfa Draii Dry- Cray (C3) Satu	ry Indicators (minimum of two required) ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8) iration Visible on Aerial Imagery (C9)
HYDROLO Wetland Hyu Primary India Surface High Wa Saturatia Water M Sedimer Drift Der	GY drology Indicators: cators (minimum of or Water (A1) ater Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3)	ne is requir	ed: check all that a Water-Sta Aquatic F True Aqua Hydrogen Oxidized Presence	pply) ained Leav auna (B13 atic Plants Sulfide C Rhizosphe of Reduc	ves (B9) 3) s (B14) odor (C1) eres on Liv ed Iron (C4	ing Roots	<u>Seconda</u> <u></u> Surfa <u>✓</u> Draii Dry- Cray (C3) Stun	ry Indicators (minimum of two required) ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8) iration Visible on Aerial Imagery (C9) ited or Stressed Plants (D1)
HYDROLO Wetland Hyu Primary India Surface High Wa Saturatio Water M Sedimer Drift Dep Algal Ma	GY drology Indicators: cators (minimum of or Water (A1) tter Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4)	ne is requir	ed: check all that a Water-Sta Aquatic F True Aqua Hydrogen Oxidized Presence Recent Ind	pply) ained Leav auna (B13 atic Plants Sulfide C Rhizosphe of Reduc	ves (B9) 3) s (B14) Odor (C1) eres on Liv ed Iron (C4 tion in Tille	ing Roots \$) d Soils (C6	<u>Seconda</u> Surf: Draii Dry- Cray (C3) Satu Stun Stun ;) ✔ Geo	ry Indicators (minimum of two required) ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8) iration Visible on Aerial Imagery (C9) ited or Stressed Plants (D1) morphic Position (D2)
HYDROLO Wetland Hyd Primary India Surface High Wa Saturatio Water M Saturatio Algal Ma Iron Dep	GY drology Indicators: cators (minimum of or Water (A1) tter Table (A2) on (A3) larks (B1) nt Deposits (B2) posits (B3) at or Crust (B4) posits (B5)	ne is requir	ed: check all that a Water-Sta Aquatic F True Aqua Hydrogen Oxidized Presence Recent Ind Thin Mucl	pply) ained Leav auna (B13 atic Plants Sulfide C Rhizosphe of Reduc on Reduct & Surface	ves (B9) 3) s (B14) Odor (C1) eres on Liv ed Iron (C4 tion in Tille (C7)	ing Roots 4) d Soils (C6	<u>Seconda</u> Surf: Draii Dry- Cray (C3) Satu Stun 5) Geo ✓ FAC	ry Indicators (minimum of two required) ace Soil Cracks (B6) nage Patterns (B10) Season Water Table (C2) rfish Burrows (C8) iration Visible on Aerial Imagery (C9) ited or Stressed Plants (D1) morphic Position (D2) -Neutral Test (D5)

Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks)						
Yes No _	Depth (inches):	_				
Yes 🗾 No _	Depth (inches): 12	_				
Yes 🖌 No _	Depth (inches): 10	Wetland Hydrology Present?	Yes 🦯 No			
eam gauge, monitor	pring well, aerial photos, previous inspe	ections), if available:				
	Yes No _ Yes No _ Yes No _ Yes No _	cave Surface (B8) Other (Explain in Remarks) Yes No Depth (inches): Yes No Depth (inches): Yes No Depth (inches): Yes No Depth (inches): Yes Yes No geam gauge, monitoring well, aerial photos, previous inspection	cave Surface (B8) Other (Explain in Remarks) Yes No Depth (inches): 12 Yes Yes No Yes Yes Depth (inches): 10 Wetland Hydrology Present? eam gauge, monitoring well, aerial photos, previous inspections), if available:			

Project/Site: HATCHi	City/County: Superior Charter Twp, Washtenaw	Sampling Date: 2021-10-22
Applicant/Owner: IBI Group	State: Michigan	Sampling Point: W6A-UPL
Investigator(s): J. DeMoss	Section, Township, Range: Section 32 T025	S R07E
Landform (hillslope, terrace, etc.): Hillslope	Local relief (concave, convex, none):	None
Slope (%): <u>1</u> Lat: <u>42.2681175</u>	Long: -83.6230184	Datum: WGS 84
Soil Map Unit Name: Hoytville silty clay loam (Ho)	NWI classific	_{ation:} None
Are climatic / hydrologic conditions on the site typical for this time of ye	ear? Yes 🗾 No (If no, explain in Ro	emarks.)
Are Vegetation, Soil, or Hydrology significantly	disturbed? Are "Normal Circumstances" p	resent? Yes 🔽 No
Are Vegetation, Soil, or Hydrology naturally pr	oblematic? (If needed, explain any answer	rs in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes Yes Yes	No <u> </u>	ls the Sampled Area within a Wetland?	Yes	No
Remarks:					

20.4	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 30 ft f)	<u>% Cover</u>	Species?	Status	Number of Dominant Species
1				That Are OBL, FACW, or FAC: 0 (A)
2				Total Number of Deminant
3.				Species Across All Strata: 1 (B)
4				
5				Percent of Dominant Species
5	·			That Are OBL, FACW, or FAC: 0 (A/B)
Sapling/Shrub Stratum (Plot size: 15 ft r)		= Total Cov	er	Prevalence Index worksheet:
				Total % Cover of: Multiply by:
2	·			
3	·			FACW species 13 $x^2 = 20$
4				FAC species 10 x 3 = 30
5				FACU species <u>75</u> x 4 = <u>300</u>
- 4		= Total Cov	er	UPL species $0 \times 5 = 0$
Herb Stratum (Plot size: 5 ft r)			FAOL	Column Totals: <u>100</u> (A) <u>358</u> (B)
1. Solidago altissima		<u> </u>	FACU	
2. Dipsacus fullonum	15		FACU	Prevalence Index = B/A = <u>3.6</u>
3. Alliaria petiolata	5		FAC	Hydrophytic Vegetation Indicators:
4. Cirsium arvense	5		FACU	1 - Rapid Test for Hydrophytic Vegetation
5. Elymus virginicus	5		FACW	2 - Dominance Test is >50%
6. Euthamia graminifolia	5		FACW	3 - Prevalence Index is ≤3.0 ¹
7. Juncus tenuis	5		FAC	4 - Morphological Adaptations ¹ (Provide supporting
8. Epilobium ciliatum	3		FACW	data in Remarks or on a separate sheet)
9. Scirpus atrovirens	2		OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
10				
	100%	= Total Cov		¹ Indicators of hydric soil and wetland hydrology must
Woody Vine Stratum (Plot size: 30 ft r)		- 10(a) 000		be present, unless disturbed or problematic.
1.				Hydrophytic
2				Vegetation
		= Total Cov	ver	Present? Yes No
Remarks: (Include photo numbers here or on a separate s	sheet.)			

Profile Desc	ription: (Describe	to the dep	oth needed to docun	nent the i	indicator	or confir	rm the absence of indicators.)
Depth	Matrix		Redo	x Feature	s		_
(inches)	Color (moist)	%	Color (moist)	%	_Type ¹	_Loc ²	Texture Remarks
0 - 4	10YR 3/2	80	10YR 5/4	20	С	M	Silty Clay Loam
<u>4 ⁻ 18</u>	10YR 4/1	95	7.5YR 5/8	5	С	M	Silty Clay Loam
-							
-							
-							
		letion RM	=Reduced Matrix MS		I Sand G	ains	² Location: PL=Pore Lining M=Matrix
Hydric Soil	Indicators:					uns.	Indicators for Problematic Hydric Soils ³ :
Histosol	(A1)		Sandy G	Bleyed Ma	atrix (S4)		Coast Prairie Redox (A16)
Histic E	pipedon (A2)		Sandy F	Redox (S5	5)		Dark Surface (S7)
Black Hi	stic (A3)		Stripped	Matrix (S	66)		Iron-Manganese Masses (F12)
Hydroge	en Sulfide (A4)	Sulfide (A4) Loamy Mucky Mineral (F1)				Very Shallow Dark Surface (TF12)	
Stratified	_ Stratified Layers (A5) Loamy Gleyed Matrix (F2)				Other (Explain in Remarks)		
2 cm Muck (A10)							
Depleted Below Dark Surface (A11)				31			
Thick Dark Surface (A12) Depleted Dark Surface (F7)				Indicators of hydrophytic vegetation and			
5 cm Mi	Sandy Mucky Mineral (S1) Redox Depressions (F8)				wetland hydrology must be present, unless disturbed or problematic		
Restrictive	Layer (if observed):	<i>,</i> ,					
Type:							
Depth (in	ches):						Hydric Soil Present? Yes No
Remarks:							
HYDROLO	GY						
Wetland Hy	drology Indicators:						
Primary India	cators (minimum of o	ne is requ	ired; check all that ap	ply)			Secondary Indicators (minimum of two required
Surface Water (A1) Water-Stained Leaves (B9)						Surface Soil Cracks (B6)	
High Wa	ater Table (A2)		Aquatic Fa	una (B13)		Drainage Patterns (B10)
Saturation	on (A3)		True Aqua	tic Plants	(B14)		Dry-Season Water Table (C2)

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one is required; che	Secondary Indicators (minimum of two required)	
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 	 Water-Stained Leaves (B9) Aquatic Fauna (B13) True Aquatic Plants (B14) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6) Thin Muck Surface (C7) Gauge or Well Data (D9) Other (Explain in Remarks) 	 Surface Soil Cracks (B6) Drainage Patterns (B10) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) Stunted or Stressed Plants (D1) Geomorphic Position (D2) FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes No	Depth (inches):	
Water Table Present? Yes No		
Saturation Present? Yes No	and Hydrology Present? Yes No	
Describe Recorded Data (stream gauge, monitoring	g well, aerial photos, previous inspections),	if available:
Remarks:		
lBl Group HMA STIL Facility Project Wetland and Stream Delineation Report

Appendix C Photographic Log

EC	Environmer Consulting & Technology, I	ntal k nc.		PHOTOGRAPI	HIC LOG
Client Name	:		Site Location:		Project No.
IBI Group			Washtenaw County, Michigan	:	210731
Photo No. 3	Date: 10/06/2021				
Direction Pho West	oto Taken:				
Description: The photo is a view of wetland W2A, located in the north- central portion of the Project Area.					
Photo No. 4 Direction Pho East	Date: 10/06/2021 oto Taken:				

Description:

This photo was taken of wetland W3A, which is situated in the north-central portion of the Project Area.

THOLO NO.	Date:	The second second				
8	10/06/2021	- and the second	AV SE CO		and the second	
Direction Pho	oto Taken:		ALC AND		2 0/8	
North						
Description:						
This photo was soil pit for uplar UPL.	taken of the nd point W1A-					
			1 The			
				N.		

ECT Environmental Consulting & Technology, Inc.			PHOTOGRAPHIC LOG				
Client Name:		Site Locat	ion:			Project No.	
IBI Group			Washtenav	v County, Mic	higan		210731
Photo No. 9	Date: 10/06/2021	Rea.					
Direction Ph	oto Taken:	The second					
South			N.	Ê			
Description:					anti-site		
This photo was grassland upla UPL) near wetla	taken of the nd area (W2A- and W2A.						
Photo No.	Date:						
Direction Ph	oto Taken:		M/L		A Margall		1
North							
Description:							
This photo shows the forested			2)			A-8-50	

EC	Environme Consulting Technology,	PHOTOG	RAPHIC LOG
Client Name	:	Site Location:	Project No.
IBI Group		Washtenaw County, Michigan	210731
Photo No.	Date:		
7	10/06/2021		CHARLEN N
- Description:			
This photo was taken of stream S2A.			

 IBI GROUP

 25200 Telegraph Road – Suite 300

 Southfield MI 48033 USA

 Tel: 248 936 8000 fax: 248 936 8111

 ibigroup.com

Appendix D

Threatened and Endangered Species Memo

BUSINESS CONFIDENTIAL NOT FOR DISTRIBUTION

То:	David Kassab, IBI Group
From:	Elizabeth Theile, Environmental Consulting & Technology, Inc. (ECT)
Date:	October 26, 2021
Re:	Threatened and Endangered Species Memorandum HMA STIL Facility Project ECT Project No. 210731

1.0 INTRODUCTION

Environmental Consulting and Technology, Inc. (ECT) conducted a review of the Hyundai Moto American (HMA) Safety Test Investigation Laboratory (STIL) Facility Project (Project) located in Superior Township, Washtenaw County, Michigan (Project Site) for Federal or State threatened and endangered (T&E) species that could occur within the Project Site or 1-mile buffer of the Project Site. This summary is a review of publicly available sources, including the U.S. Fish and Wildlife Service's (USFWS) Information for Planning and Consultation (IPaC) tool (USFWS 2021), and the Michigan Natural Features Inventory (MNFI) database (MNFI 2021a) as well as a field visit of the Project Site conducted on October 6, 2021.

The USFWS IPaC system was used to determine whether the proposed Project Site is in range of USFWS managed resources, such as species proposed or listed under the Endangered Species Act (ESA) of 1973 (16 U.S.C §1531-1544), designated critical habitat, migratory birds, inter-jurisdictional fishes, etc., and generates a list of these resources. This list indicates the potential for federally listed T&E species to be present within a designated search area such as a Project and a 1-mile buffer. However, unlike the MNFI database, this list does not necessarily indicate the documented occurrence of T&E species within the designated search area. Conversely, T&E species not recorded in the MNFI database and not listed by the USFWS may be present at a specific Project Site. Additional habitat assessments and species-specific surveys may be required to further evaluate the potential presence of T&E species at a specific project site.

The MNFI continuously updates its database with information on Michigan's endangered, threatened, or otherwise significant plant and animal species, natural plant communities, and other natural features referred to as element occurrences (EO). Records in the database indicate that a qualified observer has documented the presence of T&E species or special natural features. However, records within a query area do not guarantee the presence of T&E species at a Project Site. Likewise, the absence of records in the database for a particular query area does not preclude the potential presence of T&E species at a specific Project Site. Species listed as state-threatened or endangered are protected by the Michigan Natural Resources Department (MDNR).

The presence of T&E species may not preclude activities or development but may require alterations in the Project plan, permitting, and/or mitigation. Special concern species, natural communities, and federal candidate species are not protected under state or federal endangered species legislation and are therefore not covered within this memo.

2.0 SITE LOCATION

The Project Site encompasses approximately 46 acres of partially agricultural land, upland forest, maintained/mowed areas, emergent and scrub-shrub wetlands, and two (2) streams in Superior Township, Washtenaw County, Michigan. The area immediately surrounding the Project Site is industrially developed (manufacturing laboratory) to the north, forest to the south, west, and northwest, and Laforge Road and agricultural land to the east. The northwest boundary abuts a stream, Snidecar Drain. Although the Site is located entirely within Superior Township, the reviewed 1-mile buffer also extends into Ypsilanti Township and the City of Ypsilanti, Michigan (**Appendix A: Figure 1**).

3.0 THREATENED AND ENDANGERED SPECIES

ECT reviewed the Project Site and a 1-mile buffer (sections 28, 29, 30, 31, 32, and 33, within Superior Township (T2S R7E); sections 4, 5 in Ypsilanti Township (T3S R7E); and the City of Ypsilanti) in both the MNFI and IPaC databases. The MNFI does queries by sections of townships, whereas the IPaC information is gathered by drawing a polygon. The Project Site is entirely located within section 32, Superior Township, and the remaining sections cover the surrounding 1-mile buffer. The MNFI and IPaC were accessed on October 11, 2021. See **Appendix B** for a complete list of element occurrences generated by the MNFI database query and USFWS IPaC results.

2.1 Federal Threatened and Endangered Species

Federally listed T&E species are protected under federal law by the ESA of 1973. The act protects T&E species and some of their habitat. Listed wildlife species are protected from take and/or harm. ESA defines "take" as "...to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct." A take permit may be required from USFWS if impacts to T&E species are unavoidable. However, a project may avoid the need for a permit through the implementation of avoidance measures or best management practices (BMPs). Exceptions allow for certain activities to take place during periods of inactivity (e.g., outside of nesting and breeding season), such as tree clearing in winter.

ECT reviewed the USFWS data to identify Federally-listed T&E species within the Site and a 1-mile buffer (**Table 1, Appendix B**).

Area of Review	Listed Species Present in County
Project and 1-Mile Buffer	Indiana Bat (<i>Myotis sodalis</i>) Northern Long-eared Bat (<i>Myotis septentrionalis</i>) Eastern Massasauga Rattlesnake (<i>Sistrurus catenatus</i>) Snuffbox Mussel (<i>Epioblasma triquetra</i>) Mitchell's Satyr Butterfly (<i>Neonympha mitchellii mitchellii</i>) Poweshiek Skipperling (<i>Oarisma poweshiek</i>) Eastern Prairie Fringed Orchid (<i>Platanthera leucophaea</i>)

Table 1: Federal Threatened and Endangered Species

Indiana Bat (Federally Endangered, State-Endangered)

The Indiana bat is federally and state-listed as endangered. Indiana bats roost and form maternity colonies under loose bark or in hollows and cavities of mature trees in floodplain forests. In Michigan, savanna habitats adjacent to riparian corridors may have been historically important for roost sites, as the bats are thought to prefer sun-exposed trees for maximum warmth at the northern limit of their range. In winter, Indiana bats primarily hibernate in caves in Kentucky, Indiana, and Missouri, although a new hibernacula site has been found in northern Michigan at a hydroelectric facility in Manistee County (MNFI 2021a; USFWS 2006; Rabe 2001a).

Approximately 2 acres of upland forests are located on the Project Site. Within these forested areas, there are mature tree species including shagbark hickory (*Carya ovata*) and black walnut (*Juglans nigra*), and a few dead snags present that could provide suitable habitat preferred by the Indiana bat. Additionally, there are streams located on the Project Site that would be suitable flight paths for the bats and connect to adjacent wooded areas. The Project Site is surrounded by development and could potentially provide a safe- haven for the Indiana bat if they are present within the area; therefore, the Project could affect the Indiana bat due to the presence of suitable habitat. Additionally, the MNFI database search for the Project indicated known occurrences of the Indiana bat within 1-mile of the Project Site.

Impacts to the Indiana bat may be avoided by avoiding or minimizing tree clearing. If trees need to be cleared for the Project, winter clearing from October 1 to March 31 when bats have left their summer roost trees can be a best management practice (BMP) to avoid a take permit from USFWS.

Northern Long-Eared Bat (Federally Threatened, State Special Concern)

The northern long-eared bat (NLEB) is a federally listed, threatened bat. The species is also listed as a special concern species in Michigan. The NLEB lives in areas dominated by a mix of hardwood coniferous and deciduous trees. The habitat desired revolves around forested areas with low understory cover. NLEB has been associated with the karst topography of small caves and crevices in limestone cliffs which are used as hibernacula. Upon emerging from hibernation, NLEB will roost in trees, bark crevices, and tree hollows. During summertime, this species will inhabit any forested areas with large trees that have loose bark or deep crevices to roost in. NLEB are not tied to a specific natural community type but they will rarely roost in human-made structures and do not show preference towards dead trees compared to other bat species (Bowman 2017; USFWS 2015).

Section 4(d) of the ESA allows USFWS to define protections for species listed as threatened. Unpermitted take of the NLEB is often exempt per the 4(d) Rule. "Take" is defined by the ESA as "to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect." For the NLEB, incidental take is prohibited if it occurs within a hibernaculum, within 0.25 miles of a known hibernaculum, or if a maternity roost tree or other trees with a 150-foot radius of a maternity roost tree is cut or destroyed during the pupping season (June 1 through July 31). Outside of these prohibited activities, incidental take of the NLEB is not prohibited (USFWS 2019).

Although there are no karst topographic features, known hibernaculum, or known maternity roost trees within the Project Site, the Project Site contains a forested area containing trees with exfoliating bark which could support summertime roosting and streams that could provide suitable flight paths for the NLEB. Therefore, the Project could affect the NLEB due to the presence of a potentially suitable summer roosting habitat.

Potential impacts to bat species within the vicinity of the Project Site may be avoided or minimized by conducting tree cutting in the winter months (October 1 to March 31) while bats are no longer using summer roosting trees.

Eastern Massasauga Rattlesnake (Federally Threatened, State Special Concern)

The eastern massasauga rattlesnake (EMR) is federally listed as threatened and state-listed as a species of special concern. It is a small, thick-bodied rattlesnake that lives in shallow wetlands and adjacent uplands in portions of the Midwest region and Ontario, Canada. EMR has been found historically in a variety of wetland habitats, including bogs, fens, shrub swamps, wet meadows, marshes, moist grasslands, wet prairies, and floodplain forests. They will shift the habitats they use, depending on the season. Generally, they use wetlands in the spring, fall, and winter. In summer, snakes migrate to drier, upland sites, ranging from forest openings to old fields, agricultural lands, and prairies (USFWS 2016).

USFWS developed a set of voluntary BMPs for specific activities potentially affecting EMR in Michigan. Habitat may be considered Tier 1, Tier 2, or within the known range. Tier 1 habitats are those known to be occupied by EMR or highly likely to be occupied by EMR. Tier 2 habitats are those with a high potential habitat that may have EMR. Habitats within the known range category are areas that overlap with the known range of EMR within Michigan but are not designated Tier 1 or 2 habitats. The known range of EMR expands the entire lower peninsula of Michigan (USFWS 2017).

Except for a few small wetlands, the Project Site is dominated by maintained/mowed grasslands and upland forested areas. Of the identified wetlands on-site, most are dominated by invasive species (e.g., reed canary grass [*Phalaris arundinacea*] and narrowleaf cattail [*Typha angustifolia*]) and none contain the typical fen vegetation that the EMR prefers. Additionally, upland areas are limited due to surrounding development. The Project is unlikely to affect the EMR due to a lack of suitable habitat.

Snuffbox Mussel (Federally Endangered, State-Endangered)

The snuffbox is a federally listed and state-listed endangered mussel. The snuffbox mussel inhabits sand, gravel, or cobble substrates in swift small and medium-sized rivers. Individuals are often buried deep in the sediment (MNFI 2021a; Carman and Goforth 2000; USFWS 2012).

Although two (2) streams were identified within the Project Site, one (1) stream (S2A) has an ephemeral flow regime, meaning that it only exhibits waterflow after storm events and likely has a dry bed the rest of the year. Stream S2A would not provide suitable habitat for aquatic species. Additionally, the water quality of stream S1A (Snidecar Drain), which flows along the northern boundary of the Project Site, is likely influenced by the surrounding developed and agricultural properties. The snuffbox mussel has a low potential to occur on-site. The Project is unlikely to affect the snuffbox mussel due to a lack of suitable habitat. Additionally, if the Project does not impact the streambed of S1A (Snidecar Drain), then impacts to any aquatic species within this stream are not anticipated.

Mitchell's Satyr Butterfly (Federally Endangered, State-Endangered)

The Mitchell's satyr butterfly is a federally and state-listed endangered butterfly found in prairie fens dominated by sedges, grasses, and other graminoids, and rich in forb diversity. This butterfly may also occasionally be found in other natural communities including wet prairie, sedge meadow, tamarack swamps, and shrub-carr (Hyde 2000).

There are no prairie fens located within the Project Site. Possible suitable fen and prairie habitat was identified within the 1-mile buffer in Section 4 of Ypsilanti Township during the MNFI database search

(MNFI 2021b). However, Project impacts will not affect this site. The Project is unlikely to affect Mitchell's satyr butterfly due to the lack of suitable habitat on-site.

Poweshiek Skipperling (Federally Endangered, State-Threatened)

The Poweshiek skipperling is a federally endangered and state-threatened dark brown and orange butterfly. The Poweshiek skipperling prefers sedgy meadows, cinquefoil seeps, open fens, and high-quality tall grass prairie (USFWS 2014; Cuthrell and Slaughter 2012).

There are no prairies or fens within the Project Site. Possible suitable fen and prairie habitat was identified within the 1-mile buffer in Section 4 of Ypsilanti Township during the MNFI database search (MNFI 2021b). However, Project impacts will not affect this site. The Project is unlikely to affect the Poweshiek skipperling due to a lack of suitable habitat on-site.

Eastern Prairie Fringed Orchid (Federally Threatened, State-Endangered)

The eastern prairie fringed orchid is a federally threatened and state-endangered plant. The eastern prairie fringed orchid is a stout (up to 1 meter) plant found in wet prairies and bogs in moist alkaline and lacustrine soils. It is primarily found in moist prairie remnants, particularly those associated with lake plains, but it can also occur in open or semi-open bogs and peaty lakeshores. Though rare, this orchid can readily colonize highly disturbed sites like ditches, uncut old fields, and even the edges of golf courses as long as competition is not overly intense and proper soil fungi are present (Penskar and Higman 2000).

The Project Site is not located within a lake plain, along a lakeshore, nor are wet prairies or bogs present. Most of the Project Site is upland forest and maintained/mowed areas and does not contain the typical alkaline prairie/prairie fen habitat in which this plant is found. The Project is unlikely to affect the eastern prairie fringed orchid due to a lack of suitable habitat.

2.2 State Threatened and Endangered Species

Part 365, Endangered Species Protection, of the Natural Resources and Environmental Protection Act, 1994 PA 451 (NREPA), as amended, confers legal protection to state T&E species, including plants and animals in Michigan. The Michigan Department of Natural Resources (MDNR) is the regulatory agency that makes decisions on state-listed species and any permit requirements.

Additionally, documented occurrences of T&E species within wetlands may affect the jurisdictional status of these features such that they are subject to Clean Water Act Section 404 permitting through the Department of Environment, Great Lakes, and Energy (EGLE).

ECT reviewed the MNFI for known element occurrence (EO) of State-Listed species within sections 4 and 5 of Ypsilanti Township (T3S, R7E) and sections 28, 29, 30, 31, 32, 33 of Superior Township (T2S, R7E, **Table 2**).

Area of Review	Listed Species Present in County
T03S, R07E Sections 4, 5 and T02S, R07E	Canadian Burnet (<i>Sanguisorba canadensis</i>) Compass Plant (<i>Silphium laciniatum</i>) Cup Plant (<i>Silphium perfoliatum</i>) Edible Valerian (<i>Valeriana edulis var. ciliata</i>) Goldenseal (<i>Hydrastis canadensis</i>)

Table 2: State Threatened and Endangered Species

Sections 28, 29, 30, 31,	Kirtland's Snake (<i>Clonophis kirtlandii</i>)
32, 33	Leiberg's Panic Grass (Dichanthelium leibergii)
	Peregrine Falcon (Falco peregrinus)
	Purple Wartyback (<i>Cyclonaias tuberculate</i>)
	Red Mulberry (<i>Morus rubra</i>)
	Side-oats Grama Grass (Bouteloua curtipendula)
	Southern Redbelly Dace (Chrosomus erythrogaster)
	Blanchard's Cricket Frog (Acris blanchardi)
	False Hop Sedge (<i>Carex lupuliformis</i>)
	Ginseng (Panax quinquefolius)
	Indiana Bat (<i>Myotis sodalis</i>)
	King Rail (<i>Rallus elegans</i>)
	Lambda Snaggletooth (<i>Gastrocopta holzingeri</i>)

Canadian Burnet (State-Endangered)

Canadian burnet is a state-endangered perennial forb with cylindrical white flowered heads. Canadian burnet is found in open, damp, calcareous sites like prairie fens (MNFI 2021a). The most recent reported Canadian burnet sighting within the vicinity of the Project Site was within a 1-mile buffer area in 2008 (MNFI 2021b).

Although suitable habitat and known occurrences for the Canadian burnet were identified in Highland Cemetery within portions of the 1-mile buffer, the Project Site itself does not contain any suitable prairie or fen habitats. The Project is unlikely to affect the Canadian burnet due to the lack of suitable habitat on-site.

Compass Plant (State-Threatened)

The state-threatened compass plant is a large, erect, tap-rooted perennial forb bearing yellow flowers and grows up to nearly 10 feet in height. The compass plant is characteristic of prairie habitats. In Michigan, all known populations of the species occur in degraded railroad rights-of-way (ROW) or along roadsides (Slaughter 2009). The most recent reported compass plant sighting near Project Site 1-mile was in 1928 in the 1-mile buffer.

The Project Site does not contain any suitable prairie habitat. Although the compass plant has the potential to occur along road ROW, the Project Site is surrounded by developed and agricultural properties that have likely removed or deteriorated the occurrence of remnant prairie habitat either through routine maintenance like mowing or the application of herbicides. The potential for the compass plant to occur on-site is low. The Project is unlikely to affect the compass plant due to lack of suitable habitat.

Cup Plant (State-Threatened)

The cup plant is a state-threatened plant species in the Asteraceae (aster or daisy) family. In Michigan, the cup plant is found on river floodplains in forest openings, swales and sloughs along river margins, and other wet edges (Penskar and Crispin 2010). The most recent reported cup plant sighting within the vicinity of the Project Site was in 1920 in the 1-mile buffer.

No river floodplains, swales, or margins are located within the Project Site. The Project is unlikely to affect the cup plant due to lack of suitable habitat.

Edible Valerian (State-Threatened)

Edible valerian is a state-threatened plant species known to occur in alkaline fens in southern lower Michigan (MNFI 2021a). The most recent reported edible valerian sighting within the 1-mile buffer area was in 2008.

Although suitable fen habitat was identified within the 1-mile buffer at Highland Cemetery, the Project Site itself does not contain any fen wetlands. The Project is unlikely to affect the edible valerian due to lack of suitable habitat.

Goldenseal (State-Threatened)

Goldenseal is a state-threatened perennial plant species that prefer shady, rich, mesic southern forests, usually under a canopy of beech-sugar maple or red oak-sugar maple. Goldenseal frequently occurs in moist microhabitats near vernal pools, along forested streams, and southern floodplain forests, often in moist sandy loam, clay loam, or even organic muck soils (Penskar, Choberka, and Higman 2001). The most recent reported goldenseal sighting within the 1-mile buffer area was in 2018.

Although forested habitat occurs within the Project Site, the majority of these areas were determined to be upland areas that lacked the goldenseal's preferred habitat of vernal pools and floodplain forests. The likelihood of goldenseal occurring within the Project Site is low.

Kirtland's Snake (State-Endangered)

Kirtland's snake is a state-endangered small, reddish to dark brown water snake with alternating dark blotches on the back and sides and a bright pink or orange belly. Kirtland's snakes inhabit wet or damp, open habitats, often near ponds, streams, and other water bodies, including wet meadows, wet prairies, fens, edges of marshes, creeks and canals, wet pastures and fields, and grassy openings in forested wetlands (Barton and Lee 2010). The most recent reported sighting of the Kirtland's snake within the 1-mile buffer area was in 1902.

The Project Site includes five (5) emergent wetlands that may provide limited suitable habitat for the Kirtland's snake. However, these areas are small (<1 acre), dominated by invasive species, and likely frequently disturbed by the mowing that occurs within the site. The likelihood for Kirtland's snake to occur within the Project Site is low.

Leiberg's Panic Grass (State-Threatened)

Leiberg's panic grass is a state-threatened plant species typically inhabiting a variety of dry to wet (but primarily mesic) prairie remnants, including dry sand prairies, hillside prairies, oak openings, and open woodlands (Penskar and Crispin 2004). The most recent reported observation of Leiberg's panic grass within the 1-mile buffer was from Highland Cemetery in 2008.

The Project Site does not contain any suitable prairie habitat for Leiberg's panic grass. The Project is unlikely to affect this species due to the lack of suitable habitat.

Peregrine Falcon (State-Endangered)

The state-endangered peregrine falcon is a medium to a large-sized falcon with historic nesting areas in Michigan occurring on sandstone or granite cliffs located above the Great Lakes shoreline. Peregrine falcons also commonly use artificial structures as nesting sites, such as buildings, bridges, and towers, and are known to use many terrestrial biomes and do not appear to have a specific habitat preference (Monfils 2007). The most recent reported sighting of the peregrine falcon within the 1-mile buffer area was in 2018.

The Project Site is generally flat with no cliffs, ledges, or tall artificial structures for breeding peregrine falcons. Although falcons may forage within the open areas of the Project Site, impacts to these vegetation communities are unlikely to pose an adverse impact to populations of the peregrine falcon in the region.

Purple Wartyback (State-Threatened)

The state-threatened purple wartyback is a freshwater mussel with a circular, bumpy, yellowishbrown, or green-brown shell. Purple wartyback mussels are found in medium to large rivers with gravel or mixed sand and gravel substrates (Badra and Lee 2004). The most recent reported sighting of the purple warty back near the Project Site is from an occurrence in the Huron River in 1997 in the 1-mile buffer.

Although two (2) streams were identified within the Project Site, neither were identified as having suitable habitats for aquatic species including the purple warty back. The Project is unlikely to affect the purple wartyback mussel due to a lack of suitable habitat. Additionally, if the Project does not impact the streambed of S1A (Snidecar Drain), then impacts to any aquatic species within this stream are not anticipated.

Red Mulberry (State-Threatened)

The red mulberry is a state-threatened tree species and within Michigan, it is almost always found within or near riparian areas, typically in floodplain forest communities or in mesic to dry-mesic forests near river and stream drainages, especially along fertile slopes (Penskar 2009). The most recent reported sighting of the red mulberry within the vicinity of the Project Site was along the Huron River in the 1-mile buffer in 1880.

The Project Site does contain upland forested areas and a small riparian corridor along Snidecar Drain. Although no individuals or red mulberry were observed during the field visit on October 6, 2021, the Project Site does contain limited suitable habitat for this species.

Side-oats Gama Grass (State-Endangered)

Side-oats grama grass is a state endangered medium-sized grass often found in dry prairies, savannas, and hillsides, although its native habitat in Michigan has been mainly limited to oak barrens and hillside prairies (MNFI 2021a). The most recent reported sighting of side-oats grama grass within the vicinity of Project Site was in 1980 in the 1-mile buffer.

The Project Site does not contain any prairie, savanna, or hillside habitats. The Project is unlikely to affect the side-oats grama grass due to the lack of suitable habitat.

Southern Redbelly Dace (State-Endangered)

The Southern redbelly dace is a state-endangered fish species. The northern limits of its range are in the southeastern corner of Michigan, where it is restricted to two (2) Lake Erie drainages, the River Raisin and the Huron River (Washtenaw and Lenawee Counties). A relatively small minnow, the southern redbelly dace typically occurs in clear cool permanent headwaters of river systems, preferring spring-fed brooks and clear, wooded streams intermixed with small pools (Stagliano 2001).

The most recent reported sighting of the southern redbelly dace was recorded in the 1-mile buffer in 1973.

Neither the Huron River nor the River Raisin is located within the Project Site. Additionally, only one (1) stream identified within the Project Site was observed to have perennial (year-round) waterflow capable of supporting fish species like the redbelly dace. However, this stream, Snidecar Drain, is heavily impacted by the surrounding agricultural and developed landscape. The likelihood of the redbelly dace occurring on-site is low. The Project is unlikely to affect the redbelly dace due to the lack of suitable habitat.

Blanchard's Cricket Frog (State-Threatened)

The Blanchard's cricket frog is a state-threatened amphibian species. The Blanchard's cricket frog is a tiny (0.6 to 1.5 inches) non-climbing member of the treefrog family that inhabits the open edges of permanent ponds, lakes, floodplains, bogs, seeps, and slow-moving streams and rivers (Badra 2009). They prefer open or partially vegetated mudflats, muddy or sandy shorelines, and mats of emergent aquatic vegetation in shallow water. In Michigan, many known cricket frog sites are located near ponds and lakes that are alkaline often with fen habitat along the shoreline. The most recent reported sighting of the Blanchard's cricket frog within the 1-mile buffer was in 1950.

The Project Site includes five (5) emergent wetlands, two (2) of which (W1A and W3A) are hydrologically connected to the Snidecar Drain which has perennial (year-round) flow. While these wetlands may offer limited potential habitat for the Blanchard's cricket frog on-site of the Project, these areas are dominated by invasive species and are likely frequently disturbed due to mowing/clearing within the Project Site. The likelihood for the Blanchard's cricket frog to occur on-site is low.

False Hop Sedge (State-Threatened)

The false hop sedge is a state threatened plant species. A few Michigan records supply little habitat information, noting that the false hop sedge was collected from marshes, swamps, wet woods, shallow depressions in oak woods, swales, low wet ground, and vernal ponds in floodplains and other wooded wetlands (Penskar 2010). Through its range, false hop sedge inhabits wet forests, openings along with forest ponds, riverine wetlands, marshes, and wet thickets (efloras 2021). The most recent reported sighting of false hop sedge within the 1-mile buffer area was in 2008.

No forested floodplains, forested wetlands, or vernal pools were identified within the Project Site. The potential for the false hop sedge to occur within the Project Site is low. The Project is unlikely to affect the false hop sedge.

Ginseng (State-Threatened)

Ginseng is a state-threatened plant species predominantly found in rich hardwoods, often on northfacing slopes or ravines, ranging even into swampy portions. It also occurs in wooded dune hollows and leeward slopes along the Lake Michigan shoreline (Penskar and Higman 1996). The most recent reported sighting of the ginseng plant within the 1-mile buffer area was in 2012.

The Project Site is generally flat with no ravines, slopes, or cliffs. The Project is unlikely to affect ginseng due to lack of suitable habitat.

King Rail (State Endangered)

The king rail is a state endangered marsh bird. The largest North American rail, the king rail is large, slender, and rust-colored with a long bill and long toes, and a short, uplifted tail. The king rail prefers permanent freshwater marshes in the Midwest, utilizing grasses, sedges, rushes, and cattails for cover; expansive stands of marshy herbaceous vegetation are typically considered preferred habitats (Rabe 2001b). The most recent reported sighting of the king rail within the 1-mile buffer area was in 1948.

Although the Project Site includes emergent wetlands, these areas are generally small (<1 acre) and are dominated by invasive vegetation. The Project is unlikely to affect the King rail due to lack of suitable habitat.

Lambda Snaggletooth (State-Endangered)

The lambda snaggletooth is a state-endangered tiny land snail with a cylindrical, glassy-white shell that is 1.7 mm in length. This tiny snail is found in calcareous wooded cliffs (MNFI 2021a). The most recent reported observation within the 1-mile buffer was in 1942.

There are no calcareous wooded cliffs present within the Project Site. Due to the lack of suitable habitat and the reported nearby sighting of the lambda snaggletooth being approximately 80 years ago, it is unlikely the lambda snaggletooth is present within the Project Site.

4.0 FIELD HABITAT ASSESSMENT

On October 6, 2021, ECT conducted a field assessment to review the Project Site for T&E species or their suitable habitats within the Project. The Project Site is dominated by maintained/mowed areas with upland forested areas some of which may be connected off-site, emergent, and scrub-shrub wetlands, and two (2) streams. The Project is approximately 37 miles from the shoreline of Lake St. Clair and 28 miles from the shoreline of Lake Erie. This excludes the potential T&E species reliant on the dune lakeshore to thrive.

5.0 SUMMARY

This *Threatened and Endangered Species Memorandum* identified one potential constraint, specific to the potential presence of Indiana bats and northern long-eared bats and their suitable habitat, that should be considered during the planning and design of the proposed Project.

6.0 **REFERENCES**

- Badra, PJ. 2009. "Special Animal Abstract for Acris Crepitans Blanchardi (Blanchard's Cricket Frog)." Michigan Natural Features Inventory.
- Badra, PJ, and Y Lee. 2004. "Special Animal Abstract for Cyclonaias Tuberculata (Purple Wartyback)." Michigan Natural Features Inventory.
 - https://mnfi.anr.msu.edu/abstracts/zoology/Cyclonaias_tuberculata.pdf.
- Barton, BJ, and Y Lee. 2010. "Special Animal Abstract for Clonophis Kirtlandii (Kirtland's Snake)." Michigan Natural Features Inventory.

https://mnfi.anr.msu.edu/abstracts/zoology/Clonophis_kirtlandii.pdf.

Bowman, Melissa. 2017. "MNDNR - Rare Species Guide: Northern Long-Eared Bat (Last Rev. by MNDR 2017)." 2017.

https://www.dnr.state.mn.us/rsg/profile.html?action=elementDetail&selectedElement=AMAC C01150.

Carman, SM, and RR Goforth. 2000. "Special Animal Abstract for Epioblasma Triquetra (Snuffbox)." Michigan Natural Features Inventory.

https://mnfi.anr.msu.edu/abstracts/zoology/Epioblasma_triquetra.pdf.

- Cuthrell, DL, and BS Slaughter. 2012. "Special Animal Abstract for Oarisma Poweshiek (Poweshiek Skipperling)." Michigan Natural Features Inventory.
 - https://mnfi.anr.msu.edu/abstracts/zoology/Oarisma_poweshiek.pdf.
- efloras. 2021. "Flora of North America." 2021.

http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=242357921.

Hyde, DA. 2000. "Special Animal Abstract for Mitchell's Satyr Butterfly (Neonympha Mitchellii Mitchellii)." Michigan Natural Features Inventory.

https://mnfi.anr.msu.edu/abstracts/zoology/Neonympha_mitchellii_mitchellii.pdf.

- MNFI. 2021a. "Michigan Natural Features Inventory Michigan's Rare Plants & Animals (Online Database)." 2021. https://mnfi.anr.msu.edu/species.
- ———. 2021b. "Michigan Natural Features Inventory Natural Heritage Database Search (Online Application)." 2021. https://mnfi.anr.msu.edu/.
- Monfils, MJ. 2007. "Special Animal Abstract for Falco Peregrinus (Peregrine Falcon)." Michigan Natural Features Inventory. https://mnfi.anr.msu.edu/abstracts/zoology/Falco_peregrinus.pdf.
- Penskar, MR. 2009. "Special Plant Abstract for Morus Rubra (Red Mulberry)." Michigan Natural Features Inventory. https://mnfi.anr.msu.edu/abstracts/botany/Morus_rubra.pdf.
- ———. 2010. "Special Plant Abstract for Carex Lupuliformis (False Hop Sedge)." Michigan Natural Features Inventory. https://mnfi.anr.msu.edu/abstracts/botany/Carex_lupuliformis.pdf.
- Penskar, MR, EG Choberka, and PJ Higman. 2001. "Special Plant Abstract for Hydrastis Canadensis (Goldenseal)." Michigan Natural Features Inventory.

https://mnfi.anr.msu.edu/abstracts/botany/Hydrastis_canadensis.pdf.

- Penskar, MR, and SR Crispin. 2004. "Special Plant Abstract for Dichanthelium Leibergii (Leiberg's Panic Grass)." Michigan Natural Features Inventory.
 - https://mnfi.anr.msu.edu/abstracts/botany/Dichanthelium_leibergii.pdf.
- ———. 2010. "Special Plant Abstract for Silphium Perfoliatum (Cup-Plant)." Michigan Natural Features Inventory. https://mnfi.anr.msu.edu/abstracts/botany/Silphium_perfoliatum.pdf.
- Penskar, MR, and PJ Higman. 1996. "Special Plant Abstract for Panax Quinquefolius (Ginseng)." Michigan Natural Features Inventory.

https://mnfi.anr.msu.edu/abstracts/botany/Panax_quinquefolius.pdf.

———. 2000. "Special Plant Abstract for Platanthera Leucophaea (Eastern Prairie-Fringed Orchid)." Michigan Natural Features Inventory.

https://mnfi.anr.msu.edu/abstracts/botany/Platanthera_leucophaea.pdf.

Rabe, ML. 2001a. "Special Animal Abstract for Myotis Sodalis (Indiana Bat)." Michigan Natural Features Inventory. https://mnfi.anr.msu.edu/abstracts/zoology/Myotis_sodalis.pdf.

- ———. 2001b. "Special Animal Abstract for Rallus Elegans (King Rail)." Michigan Natural Features Inventory. https://mnfi.anr.msu.edu/abstracts/zoology/Rallus_elegans.pdf.
- Slaughter, B.S. 2009. "Special Animal Abstract for Silphium Laciniatum (Compass Plant)." Michigan Natural Features Inventory.

https://mnfi.anr.msu.edu/abstracts/zoology/Pantherohttps://mnfi.anr.msu.edu/abstracts/bo tany/Silphium_laciniatum.pdfphis_spiloides.pdf.

Stagliano, DM. 2001. "Special Animal Abstract for Phoxinus Erythrogaster (Southern Redbelly Dace)." Michigan Natural Features Inventory.

https://mnfi.anr.msu.edu/abstracts/zoology/Phoxinus_erythrogaster.pdf.

- USFWS. 2006. "Fact Sheet: Indiana Bat (Myotis Sodalis)." U.S. Fish and Wildlife Service. https://www.fws.gov/midwest/endangered/mammals/inba/pdf/inbafctsht.pdf.
- ———. 2012. "Fact Sheet: Snuffbox (Freshwater Mussel) Epioblasma Triquetra." U.S. Fish and Wildlife Service.

http://www.fws.gov/Midwest/endangered/clams/snuffbox/pdf/SnuffboxFactSheetFeb2012.p df.

———. 2014. "Fact Sheet: Poweshiek Skipperling (Oarisma Poweshiek)." U.S. Fish and Wildlife Service.

https://www.fws.gov/midwest/endangered/insects/posk/pdf/poskFactSheetOct2014.pdf.

-——. 2015. "Fact Sheet: Northern-Long-Eared Bat (Myotis Septentrionalis)." U.S. Fish and Wildlife Service.

https://www.fws.gov/midwest/endangered/mammals/nleb/pdf/NLEBFactSheet01April2015.p df.

———. 2016. "Fact Sheet: Eastern Massassauga, Sistrurus Catenatus [Ver. Sep. 2016]." U.S. Fish and Wildlife Service.

https://www.fws.gov/midwest/endangered/reptiles/eama/pdf/EMRFactSheetSept2016.pdf.

- ———. 2017. "General Project Design Guidelines Environmental Screening for Eastern Massasauga Rattlesnake in Michigan [March 14, 2017]." U.S. Fish and Wildlife Service.
- ———. 2019. "USFWS: Northern Long-Eared Bat 4(d) Rule." 2019. https://www.fws.gov/midwest/Endangered/mammals/nleb/4drule.html.
- ———. 2021. "USFWS Information for Planning and Consultation (IPaC)." 2021. https://ecos.fws.gov/ipac/.

BUSINESS CONFIDENTIAL NOT FOR DISTRIBUTION

Appendix A

Appendix B

 IBI GROUP

 25200 Telegraph Road – Suite 300

 Southfield MI 48033 USA

 Tel: 248 936 8000 fax: 248 936 8111

 ibigroup.com

Appendix E

Tree Survey Memo

То:	David Kassab IBI Group
From:	Elizabeth Theile Environmental Consulting & Technology, Inc.
Date:	November 8, 2021
Re:	Tree Survey Results HMA STIL Facility Project ECT Project No. 210731

1.0 INTRODUCTION AND METHODOLOGY

Environmental Consulting and Technology, Inc. (ECT) conducted a tree survey for the Hyundai Motor American (HMA) Safety Test Investigation Laboratory (STIL) Facility Project (Project) located in Superior Township, Washtenaw County, Michigan (Project Site). This summary presents the results of the tree survey completed on the Project Site on October 18, 22, 26, 27, 28; and November 1, 2, and 4, 2021.

The Project Site was reviewed for the presence of *regulated trees*, as defined in the Superior Township Zoning Ordinance, *Article 14, Section 14.05 (F): Woodlands and Tree Preservation*.

These trees included:

- All coniferous trees 10.0 feet or greater in height.
- All deciduous trees 8.0 inches or greater in diameter at breast height (DBH).
- All American chestnut (*Castanea dentata*) and butternut (*Juglans cinerea*) tree 6 inches or greater in DBH.
- All observed box elder (*Acer negundo*), silver maple (*Acer saccharinum*), eastern cottonwood (*Populus deltoides*), and eastern red cedar (*Juniperus virginiana*) trees of suitable size were included in the inventory, as well as non-native suitably sized buckthorn (*Rhamnus cathartica* and *Frangula alnus*), Eurasian honeysuckles (*Lonicera spp.*), autumn olive (*Elaegnus umbellata*), and multiflora rose (*Rosa multiflora*). However, these species do not require replacement per the township ordinance.

Regulated trees were tagged in the field, using non-corrosive uniquely numbered metal tags (each tag containing a different number). For each documented tree, the GPS location, species, diameter at breast height (DBH), and condition were recorded. Height was also recorded for conifer trees. Tree locations were mapped using a sub-meter Trimble® R1 global positioning system (GPS) unit. Tree species were identified by flowers, leaves, bark, twigs, stems, fruits, and habits.

When an individual tree has two or more trunks emanating from a point that is 4.5 feet (DBH) or closer to the ground surface, that tree qualifies as a *multitrunk* tree. When multitrunk trees bifurcated at a height of greater than 1 foot above the ground, they were assessed with a single trunk measurement just below the bifurcation point. In contrast, multitrunk trees that bifurcated at a height of less than 1 foot from the ground were assessed with two or more trunk measurements at DBH height, recorded separately, and affixed with two or more unique tags.

Each tree's aggregate condition was assessed and categorized as *Excellent*, *Good*, *Fair*, *Poor*, or *Dead/Dying*. The aggregate condition of an individual tree is essentially a scale denoting its esthetic and habitat value combined with likely longevity. Factors positively affecting condition rating for a given tree include vertical growth, symmetry, undamaged and living trunks and limbs, and a full canopy. Factors negatively affecting condition rating for a given tree include unilateral growth, asymmetry, damaged or partially dead trunks and limbs, and a small canopy.

Tree ratings can generally be interpreted according to the following:

- *Excellent* trees usually have no growth defects or just minor defects. They tend to have high esthetic value. Barring an introduced disease or catastrophic event such as a tornado, such trees are generally expected to live at least 100 more years beyond ECT's survey date. When they are mature *Excellent* trees often provide ample food (nuts, berries, etc.) and staging areas for wildlife.
- *Good* trees may have minor defects or competitive challenges that could eventually limit their survival to less than 100 years into the future. Depending on size and location *Good* trees often provide ample food and cover for wildlife, and are often of high esthetic valuable.
- *Fair* trees may have one or more significant defects or competitive challenges that could limit their lifespan to 40 years or less from the time of the tree survey. Depending on size and location *Fair* trees may still hold significant esthetic value, and depending on the defects present (e.g. if trunk rot is starting to occur) they may provide a valuable environment for insects, fungi, nesting birds, and other wildlife.
- *Poor* trees generally have one or more quite significant defects or competitive challenges that are likely to cause the death of the tree within the next 20 years. *Poor* trees may have trunk rot or cavities that provide a valuable home for insects, fungi, nesting birds, and other wildlife.
- *Dead/Dying* trees were observed to be alive at the time of the survey but due to disease or other major defects are approaching death within the next 5 years. Issues such as Dutch elm disease, severe basal trunk rot, severe lean, and competitive light starvation can all cause a tree to be classified as *Dead/Dying*. Such trees generally have low esthetic value but often provide a valuable home for insects, fungi, nesting birds, and other wildlife.

2.0 SITE LOCATION

The Project Site contains approximately 46 acres of agricultural, forested, shrubby, or scrubby, and old field terrain in Superior Township (T2S R7E, Sec 32), Washtenaw County, Michigan. Lands immediately surrounding the Project Site are industrially developed (manufacturing laboratory) to the north, forested to the south, west, and northwest, and with Leforge Road and agricultural land to the east. The northwest boundary of the surveyed parcel contains a stream known as *Snidecar Drain* (**Appendix A: Figure 1**).

3.0 TREE SURVEY RESULTS

ECT completed the tree inventory over eight days between October 18 to November 4, 2021.

See **Appendix A; Figure 2** for a map showing all trees documented within the Project Site. See **Appendix B** for a table of attributes for all trees recorded within the Project Site.

Most trees within the Project Site occur within a natural forest on the site's west half, and in property boundary tree lines and hedgerows. A minority of the trees at the Project Site are isolated in fields or occur in landscaped areas. A total of 1284 trees, comprised of 36 tree species, were surveyed within the Project Site (see Table 1 below). Overall dominant tree species included shagbark hickory (*Carya ovata*), pignut hickory (*Carya glabra*), and bitternut hickory (*Carya cordiformis*); red oak (*Quercus rubra*),

white oak (*Quercus alba*), scarlet oak (*Quercus coccinea*), and bur oak (*Quercus macrocarpa*); black walnut (*Juglans nigra*); and basswood (*Tilia americana*). The DBH of trees ranged from 1.5 inches to 57.1 inches.

Table 1. Thee Sarrey Coveran Sarrey Results				
Total Number of Trees	1284			
Total Number of Tree Species	36			
DBH Range	1.5 to 57.1 inches			
Landmark Trees	230			
Sovereign Trees	1			

Table 1: Tree Survey – Overall Survey Results

3.1 Site Conditions

The Project Site encompasses approximately 46 acres of agricultural, forested, scrubby, and old field lands. The agricultural fields are relatively weedy and dominated by annual species, which is an outfall of ongoing farming activity. The terrain is gently hilly, owing to the site's glacial moraine origin. Soils appeared to be loams (mainly silt-loams and clay-loams with limited infiltration capacities, a partial result of many years of farming activity).

A majority of the township-regulated trees documented in the tree survey occur in a forest patch on the western side of the Project Site. This forest patch is an *oak-hickory forest*, which is the natural community type that dominated this portion of Section 32 before the advent of land clearing for agricultural usage in the 1800s (Albert, Comer, and Enander 2008). Because this forest patch has never been plowed or otherwise fully cleared, it contains a relatively intact and diverse assemblage of native trees and shrubs. This forest is dominated by shagbark, pignut, and bitternut hickories; red, white, scarlet, and bur oaks; black walnut; and basswood. Other tree species such as slippery and American elm (Ulmus rubra & U. americana); red, sugar, and black maple (Acer rubrum, saccharum, & nigrum); ironwood (Ostrya virginiana), cottonwood (Populus deltoides), hackberry (Celtis occidentalis), and black cherry (Prunus serotina) also occur in this forest, but these species are not dominant in terms of frequency. Trees within this forest patch are relatively old (typical tree age is estimated between 50 and 200 years) and are mostly in very good condition—trees are generally straight, with large canopies, and few defects. This forested patch contains some decaying stumps, along with a relatively low density of fallen logs, suggesting that a selective logging event occurred in this forest sometime between 1975 and 2000. Also, a scattering of non-native shrubs in the forest understory suggests that it may have been lightly utilized for livestock grazing at some distant time in the agricultural era. Oak-hickory forests are fire-dependent systems, and owing to the lack of recent fires there is a slightly increasing component of cherry, maple, and elm within this forest.

Most of the remaining trees on the Project Site occur along property borders, old field borders, hedgerows, or the roadside (Leforge Road). Trees in these locations tend to be a combination of remnant oak-hickory forest species (grown after acorns and hickory nuts are carried in as seed by squirrels and birds) and species that are adept at establishing in grassy field edges, such as black walnut and box elder.

Tree conditions tended to vary from tree to tree although some trends were evident. The trees in the best condition tended to be oaks, hickories, and walnuts, whereas trees in the worst condition tended to be box elder and white mulberry (the latter a non-native species). Owing to open-grown conditions with high light levels, the biggest trees on the Project Site tended to grow along hedgerows and

borders. However, even if not the largest, the oldest trees are likely to occur within the Project Site's previously described remnant forest patch.

In general, invasive shrub content, including buckthorn, autumn olive, honeysuckle, and multiflora rose, was minor within the interior of the forested patch, but often heavy along property borders, old fields, and field borders, hedgerows, and the roadside. No common reeds were incidentally observed within the Project Site, however other invasive herbaceous plants such as teasel (*Dipsacus fullonum*) were locally heavy within old field settings.

3.1 Landmark and Sovereign Trees

The Superior Township Zoning Ordinance, *Article 14, Section 14.05 (F): Woodlands and Tree Preservation* define a landmark tree as any tree that has a DBH of 24 inches or greater, or that meets the species and DBH conditions listed in Table 2 below. A sovereign tree is defined as "any tree that is registered on the National Big Tree Registry or a similar national or state registry accepted by the Planning Commission; that has been documented by the Township, a historian, or other means accepted by the Planning Commission to be closely associated with an event, person, or place of historical significance to the Township", or that meets the species and DBH conditions listed in Table 2 below. A total of 230 landmark trees and 1 sovereign tree were documented within the Project Site (Table 2).

Common Name	Species	Landmark Tree DBH (minimum)	Total # Landmark within Project Site	Sovereign Tree DBH (minimum)	Total # Sovereign within Project Site
Any tree species that have a DBH of at least:		24 inches	49	-	
Basswood	Tilia americana	18 inches	32	54 inches	0
Beech	Fagus grandifolia	18 inches		45 inches	
Buckeye, Ohio	Aesculus glabra	18 inches		-	
Catalpa	<i>Catalpa</i> spp.	18 inches		45 inches	
Cherry, Black	Prunus serotina	18 inches	9	54 inches	0
Elm, American	Ulmus americana	18 inches	6	50 inches	0
Fir	Abies spp.	18 inches		-	
Fir, Douglas	Pseudotsuga menziesii	18 inches		-	
Kentucky Coffee Tree	Gymnocladus dioicus	18 inches		40 inches	
Pine	Pinus spp.	18 inches	0	-	
Sycamore or London Plane	<i>Platanus</i> spp.	18 inches		54 inches	
Spruce	Picea spp.	18 inches	0	-	0
Tulip-tree	Liriodendron tulipifera	18 inches		54 inches	
Walnut, Black	Juglans nigra	18 inches	43	54 inches	0
Hickory, various	<i>Carya</i> spp.	16 inches	50	35 inches	0
Maple	Acer spp.	16 inches	7	48 inches	0
Oak	Quercus spp.	16 inches	81	48 inches	1
Birch	<i>Betula</i> spp.	12 inches		36 inches	

Table 2: Landmark and Sovereign Trees – Survey Results

Cherry	Prunus spp.	12 inches	2	36 inches	0
American Chestnut	Castanea dentata	6 inches	0	18 inches	0
Butternut	Juglans cinerea	6 inches	0	18 inches	0

- - = species not present on site

3.2 Standards for Tree Preservation Replacement

Under the Superior Township Zoning Ordinance, *Article 14, Section 14.05 (F): Woodlands and Tree Preservation*. Regulated trees must be replaced at a ratio in accordance with the type and size of the trees being removed. Table 3 below provides the required replacement ratio for regulated trees that are removed.

Table 3: Tree Preservation Replacement – Standards and Survey Results

Regulated Trees	Replacement Ratio (number of replacement trees per removed tree)					
Coniferous (height)						
10.0 to 15.0 feet	One to one (1:1)					
15.01 to 30.0 feet	Three to one (3:1)					
More than 30.0 feet	Six to one (6:1)					
Landmark coniferous trees	One (1) tree per inch of removed tree DBH					
Deciduous (DBH)						
8.0 to 12.0 inches	One to one (1:1)					
12.01 to 16.0 inches	Three to one (3:1)					
More than 16.0 inches	Six to one (6:1)					
Landmark deciduous tree	One (1) tree per inch of removed tree DBH					
Sovereign (DBH)						
Sovereign tree Two (2) trees per inch of removed tree DBH						

4.0 SUMMARY

This *Tree Survey Memorandum* identified 1,182 regulated trees within the Project Site, including 230 landmark trees and 1 sovereign tree. The type and size of these surveyed trees fall within a range of tree replacement standards (Table 3). Once the area of disturbance and/or proposed tree removals are known, the proposed tree impacts and the subsequent replacement requirements under the Superior Township Zoning Ordinance, *Article 14, Section F: Woodlands and Tree Preservation* can be determined.

5.0 **REFERENCES**

Albert, D.A., P.J. Comer, and H. Enander. 2008. "An Atlas of Early Michigan's Forests, Grasslands, and Wetlands." East Lansing, MI: Michigan State University Press.

"Superior Township Zoning Ordinance, Article 14, Section 14.05 (F): Woodlands and Tree Preservation) Located at This Website." n.d. https://superiortownship.org/planningcommission/zoning-ordinance/.

Appendix A

Appendix B

			DBH	Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
63	Thuja occidentalis	white cedar	2.8	10	fair		
64	Thuja occidentalis	white cedar	2.7	11	good		
65	Thuja occidentalis	white cedar	3.0	13	good		
66	Thuja occidentalis	white cedar	2.6	13	good		
67	Thuja occidentalis	white cedar	2.6	13	good		
68	Thuja occidentalis	white cedar	2.2	11	good		
69	Thuja occidentalis	white cedar	2.9	14	good		
70	Thuja occidentalis	white cedar	3.0	13	good		
/1	Thuja occidentalis	white cedar	1.9	11	good		
72	Thuja occidentalis	white cedar	3.0	15	good		
73	Thuja occidentalis	white cedar	2.1	11	good		
74	Thuja occidentalis	white cedar	3.2	14	good		
75	Thuja occidentalis	white cedar	2.0	14	good		
70	Thuja occidentalis	white cedar	2.4	10	good		
79	Thuja occidentalis	white cedar	2.0	12	good		
70	Thuja occidentalis	white cedar	2.4	12	good		
80	Thuja occidentalis	white cedar	2.5	10	good		
81	Thuja occidentalis	white cedar	2.5	10	good		
82	Thuja occidentalis	white cedar	2.6	11	good		
83	Thuja occidentalis	white cedar	3.5	12	good		
84	Thuja occidentalis	white cedar	2.9	13	good		
85	Thuja occidentalis	white cedar	2.5	12	good		
86	Thuja occidentalis	white cedar	2.9	11	good		
87	Thuja occidentalis	white cedar	3.0	13	good		
88	Thuja occidentalis	white cedar	2.8	11	good		
89	Thuia occidentalis	white cedar	2.8	11	good		
90	Thuia occidentalis	white cedar	2.4	12	good		
91	Thuja occidentalis	white cedar	3.2	12	good		
92	Thuja occidentalis	white cedar	3.3	13	good		
93	Thuja occidentalis	white cedar	3.5	10	good		
94	Thuja occidentalis	white cedar	3.0	10	good		
95	Thuja occidentalis	white cedar	3.5	12	good		
96	Thuja occidentalis	white cedar	3.0	11	good		
97	Thuja occidentalis	white cedar	3.2	11	good		
98	Thuja occidentalis	white cedar	3.0	11	good		
99	Thuja occidentalis	white cedar	3.4	12	good		
100	Thuja occidentalis	white cedar	2.4	10	good		
101	Thuja occidentalis	white cedar	3.5	12	good		
102	Thuja occidentalis	white cedar	3.6	11	good		
103	Thuja occidentalis	white cedar	3.5	12	good		
104	Thuja occidentalis	white cedar	3.0	12	good		
105	Thuja occidentalis	white cedar	2.9	13	good		
106	Thuja occidentalis	white cedar	2.9	13	good		
107	Thuja occidentalis	white cedar	2.7	12	good		
108	Thuja occidentalis	white cedar	2.0	13	good		
109	Thuja occidentalis	white cedar	3.0	10	good		
110	Thuja occidentalis	white cedar	1.5	11	good		
111	Thuja occidentalis	white cedar	2.2	12	good		
112	Thuja occidentalis	white cedar	2.3	10	good		
113	Thuja occidentalis	white cedar	2.8	11	good		
114	Thuja occidentalis	white cedar	2.8	13	good		
115	Thuja occidentalis	white cedar	3.1	13	good		
116	Thuja occidentalis	white cedar	2.3	10	good		
117	Thuja occidentalis	white cedar	2.5	14	good		
118	I huja occidentalis	white cedar	2.4	13	good		
119	I huja occidentalis	white cedar	4.6	11	good		
120	Acer negundo	box elder	8.7		poor		
Tag No.	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
---------	--------------------	-------------------	-----------------	------------------	---------------	----------	-----------
121	Acer negundo	box elder	97	(· /	noor		
121	Acer negundo	box elder	19.9		excellent	Y	
123	Juglans nigra	black walnut	16.0		good		
124	Fraxinus americana	white ash	8.3		good		
125	Juglans nigra	black walnut	8.5		excellent		
126	Salix nigra	black willow	17.4		fair		
127	Salix nigra	black willow	16.2		good		
128	Salix nigra	black willow	14.3		good		
129	Populus deltoides	cottonwood	9.4		excellent		
130	Acer negundo	box elder	8.4		dead or dying		
131	Juglans nigra	black walnut	9.8		good		
132	Fraxinus americana	white ash	8.5		good		
133	Juglans nigra	black walnut	8.9		good		
134	Acer negundo	box elder	9.0		poor		
135	Acer negundo	box elder	9.0		dead or dying		
136	Juglans nigra	black walnut	23.7		excellent	Y	
137	Acer negundo	box elder	15.2		dead or dying		
138	Ulmus rubra	slippery elm	8.0		excellent		
139	Acer negundo	box elder	9.4		poor		
140	Juglans nigra	black walnut	8.9		good		
141	Acer negundo	box elder	10.7		dead or dying		
142	Salix nigra	black willow	12.4		fair		
143	Salix nigra	black willow	9.6		poor		
144	Salix nigra	black willow	10.4		poor		
145	Salix nigra	black willow	13.9		fair		
146	Salix nigra	black willow	13.8		good		
147	Salix nigra	black willow	10.8		fair		
148	Fraxinus americana	white ash	8.6		fair		
149	Juglans nigra	black walnut	8.0		fair		
150	Crataegus sp.	hawthorn	9.1		fair		
151	Fraxinus americana	white ash	8.9		good		
152	Juglans nigra	black walnut	24.1		excellent	Y	
153	Ulmus americana	American elm	17.3		good		
154	Juglans nigra	black walnut	12.1		good		
155	Juglans nigra	black walnut	8.5		good		
156	Ulmus americana	American elm	8.9		good		
157	Juglans nigra	black walnut	21.4		excellent	Y	
158	Acer negundo	box elder	15.2		dead or dying		
159	Juglans nigra	black walnut	16.7		fair		
160	Juglans nigra	black walnut	21.8		excellent	Y	
161	Carya cordiformis	bitternut hickory	8.8		good		
162	Morus alba	white mulberry	9.4		fair		
163	Salix nigra	black willow	20.8		good		
164	Juglans nigra	black walnut	12.2		good		
165	Acer negundo	box elder	10.5		dead or dying		
166	Ulmus americana	American elm	30.9		good	Y	
167	Juglans nigra	black walnut	17.7		good		
168	Morus alba	white mulberry	9.8		fair		
169	Acer negundo	box elder	12.4		poor		
170	Acer negundo	box elder	10.8		poor		
171	Acer negundo	box elder	9.8		fair		
172	Juglans nigra	black walnut	17.3		good		
173	Acer negundo	box elder	9.0		poor		
174	Prunus serotina	wild black cherry	12.8		poor		
175	Acer negundo	box elder	20.5		fair	Y	
176	Acer negundo	box elder	8.0		poor		
177	Juglans nigra	black walnut	11.6		excellent		
178	Acer negundo	box elder	8.7		fair		

Tag No.	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
179	Celtis occidentalis	hackberry	14.1		excellent		
180	Ulmus americana	American elm	8.0		good		
181	Acer negundo	box elder	9.0		fair		
182	Juglans nigra	black walnut	22.2		excellent	Y	
183	Juglans nigra	black walnut	10.7		excellent		
184	Juglans nigra	black walnut	8.3		excellent		
185	Juglans nigra	black walnut	11.1		good		
186	Ulmus americana	American elm	11.4		good		
187	Juglans nigra	black walnut	10.6		good		
188	Juglans nigra	black walnut	10.2		good		
189	Juglans nigra	black walnut	9.3		good		
190	Juglans nigra	black walnut	11.1		fair		
191	Juglans nigra	black walnut	17.0		excellent		
192	Juglans nigra	black walnut	11.5		good		
193	Juglans nigra	black walnut	10.2		good		
194	Juglans nigra	black walnut	11.7		excellent		
195	Ulmus pumila	Siberian elm	10.7		fair		
196	Juglans nigra	black walnut	11.6		excellent		
197	Juglans nigra	black walnut	11.7		excellent		
198	Juglans nigra	black walnut	13.8		excellent		
199	Juglans nigra	black walnut	9.6		excellent		
200	Ulmus americana	American elm	8.1		good		
201	Juglans nigra	black walnut	8.5		excellent		
202	Juglans nigra	black walnut	14.7		excellent		
203	Juglans nigra	black walnut	12.6		excellent		
204	Acer negundo	box elder	10.2		dead or dying		
205	Jugians nigra	black walnut	8.6		good		
206	Jugians nigra		15.7		excellent		
207	Ulmus americana	American eim	8.3		excellent		
208	Jugians nigra	black walnut	14.0		good		
209	Jugians nigra	black walnut	10.0		excellent	V	
210		black walnut	10.0		excellent	Ť	
211		box elder	8.7		fair		
212	Acer negundo	box elder	9.6		fair		
213	Ulmus rubra	slinnery elm	16.5				
214	luglans nigra	black walnut	8.7		excellent		
216	Juglans nigra	black walnut	22.4		good	Y	
217	luglans nigra	black walnut	10.0		excellent		
218	Juglans nigra	black walnut	19.9		excellent	Y	
219	Juglans nigra	black walnut	8.0		good		
220	Juglans nigra	black walnut	20.0		good	Y	
221	Salix nigra	black willow	21.3		good		
222	Juglans nigra	black walnut	11.5		fair		
223	Juglans nigra	black walnut	28.3		good	Y	
224	Fraxinus americana	white ash	8.3		fair		
225	Juglans nigra	black walnut	9.1		good		
226	Juglans nigra	black walnut	16.4		good		
227	Juglans nigra	black walnut	11.6		good		
228	Juglans nigra	black walnut	8.5		good		
229	Juglans nigra	black walnut	9.5		good		
230	Juglans nigra	black walnut	9.1		good		
231	Juglans nigra	black walnut	17.6		good		
232	Juglans nigra	black walnut	20.7		excellent	Y	
233	Juglans nigra	black walnut	9.4		excellent		
234	Juglans nigra	black walnut	9.1		excellent		
235	Juglans nigra	black walnut	13.1		fair		
236	Juglans nigra	black walnut	23.8		excellent	Y	

			DBH	Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
237	Juglans nigra	black walnut	18.1		good	Y	
238	Juglans nigra	black walnut	12.5		fair		
239	Juglans nigra	black walnut	22.9		good	Y	
240	Juglans nigra	black walnut	11.7		good		
241	Juglans nigra	black walnut	11.6		good		
242	Juglans nigra	black walnut	25.6		good	Y	
243	Juglans nigra	black walnut	10.4		good		
244	Juglans nigra	black walnut	24.8		excellent	Y	
245	Juglans nigra	black walnut	17.0		good		
246	Juglans nigra	black walnut	8.1		good		
247	Ulmus rubra	slippery elm	12.5		good		
248	Juglans nigra	black walnut	14.6		excellent		
249	Juglans nigra	black walnut	9.4		good		
250	Juglans nigra	black walnut	12.2		good		
251	Juglans nigra	black walnut	15.6		excellent		
252	Juglans nigra	black walnut	20.1		good	Y	
253	Tilia americana	basswood	11.0		excellent		
254	Juglans nigra	black walnut	12.1		fair		
255	Juglans nigra	black walnut	24.9		excellent	Y	
256	Juglans nigra	black walnut	8.9		fair		
257	Tilia americana	basswood	21.0		good	Y	
258	Juglans nigra	black walnut	52.8		fair	Y	
259	Juglans nigra	black walnut	22.9		excellent	Y	
260	Juglans nigra	black walnut	25.0		good	Y	
261	Carya cordiformis	bitternut hickory	9.5		excellent		
262	Juglans nigra	black walnut	8.4		good		
263	Juglans nigra	black walnut	10.2		good		
264	Ulmus rubra	slippery elm	11.2		good		
265	Juglans nigra	black walnut	13.6		good		
266	Juglans nigra	black walnut	11.8		fair		
267	Prunus serotina	wild black cherry	11.1		fair		
268	Juglans nigra	black walnut	17.5		excellent		
269	Juglans nigra	black walnut	11.3		good		
270	Juglans nigra	black walnut	20.6		good	Y	
271	Juglans nigra	black walnut	10.2		good		
272	Juglans nigra	black walnut	14.0		good		
273	Juglans nigra	black walnut	12.2		excellent		
274	Juglans nigra	black walnut	8.3		excellent		
275	Ulmus rubra	slippery elm	8.0		good		
276	Juglans nigra	black walnut	33.2		good	Y	
277	Ulmus rubra	slippery elm	11.8		good		
278	Juglans nigra	black walnut	16.3		fair		
279	Juglans nigra	black walnut	24.6		good	Y	
280	Ulmus rubra	slippery elm	9.6		good		
281	Juglans nigra	black walnut	22.6		good	Y	
282	Celtis occidentalis	hackberry	10.3		excellent		
283	Juglans nigra	black walnut	22.3		good	Y	
284	Juglans nigra	black walnut	13.6		excellent		
285	Juglans nigra	black walnut	11.1		excellent		
286	Juglans nigra	black walnut	16.1		excellent		
287	Ulmus rubra	slippery elm	8.6		excellent		
288	Prunus serotina	wild black cherry	18.3		fair	Y	
289	Prunus serotina	wild black cherry	23.6		fair	Y	
290	Prunus serotina	wild black cherry	30.7		fair	Y	
291	Ulmus rubra	slippery elm	8.7		fair		
292	Quercus coccinea	scarlet oak	20.4		excellent	Y	
293	Quercus rubra	red oak	10.6		excellent		
294	Prunus serotina	wild black cherry	29.5		poor	Y	

Tag No.	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
295	Ulmus americana	American elm	8.7		good		
296	Prunus serotina	wild black cherry	15.2		fair		
297	Juglans nigra	black walnut	16.2		fair		
298	Juglans nigra	black walnut	14.9		excellent		
299	Fraxinus americana	white ash	8.3		fair		
300	Ulmus rubra	slippery elm	19.6		good		
301	Juglans nigra	black walnut	34.6		fair	Y	
302	Prunus serotina	wild black cherry	10.6		fair		
303	Prunus serotina	wild black cherry	10.4		fair		
304	Carya glabra	pignut hickory	8.0		excellent		
305	Carya glabra	pignut hickory	16.3		excellent	Y	
306	Prunus serotina	wild black cherry	8.0		fair		
307	Carya glabra	pignut hickory	26.3		excellent	Y	
308	Prunus serotina	wild black cherry	10.9		good		
309	Carya glabra	pignut hickory	8.1		excellent		
310	Carya glabra	pignut hickory	8.1		excellent		
311	Quercus rubra	red oak	9.8		excellent		
312	Quercus coccinea	scarlet oak	8.3		excellent		
313	Quercus rubra	red oak	11.5		excellent		
314	Fraxinus americana	white ash	8.3		good		
315	Ulmus americana	American elm	14.4		good		
316	Ulmus americana	American elm	9.3		good		
317	Juniperus virginiana	red cedar	7.1	20	excellent		
318	Fraxinus americana	white ash	8.3		fair		
319	Quercus coccinea	scarlet oak	10.2		good		
320	Quercus coccinea	scarlet oak	15.0		excellent		
321	Carya glabra	pignut hickory	8.2		excellent		
322	Carya glabra	pignut hickory	14.6		excellent		
323	Quercus coccinea	scarlet oak	9.3		excellent		
324	Carya glabra	pignut hickory	9.3		excellent		
325	Quercus coccinea	scarlet oak	12.7		excellent		
326	Quercus coccinea	scarlet oak	11.3		excellent		
327	Fraxinus americana	white ash	8.6		fair		
328	Quercus coccinea	scarlet oak	16.3		excellent	Y	
329	Juglans nigra	black walnut	8.0		excellent		
330	Acer rubrum	red maple	9.4		poor		
331	Quercus coccinea	scarlet oak	11.9		excellent		
332	Quercus coccinea	scarlet oak	10.1		excellent		
333	Jugians nigra	black walnut	16.3		excellent		
334	Jugians nigra	black walnut	10.5		excellent		
335	Jugians nigra	black walnut	8.3		excellent		
330	Jugians nigra	black walnut	15.0		excellent		
227	Jugians nigra	black walnut	0.J		excellent		
338	Jugians nigra	black walnut	11.4		good		
240	Jugians nigra	black walnut	10.0		excellent		
240			10.8		good		
241	Unitus americana	American eini	17.4		guuu		
242	Jugians nigra	black walnut	12.5		excellent		
345	Jugians nigra	black walnut	11.0		good		
3/15	Fravinus americana	white ash	2 0.11		fair		
345	Fravinus americana	white ash	0.9 Q 1		idii fair		
340		black walnut	0.1 12 0		avcellent		
347	Jugians nigra	black walnut	11.9		excellent		
2/0		American olm	14.8 0.2		excellent		
345		hlack walnut	0.3		guuu		
350	Jugians nigra	black walnut	9.4 10 7		good		
351	Jugians nigra	black walnut	10.7		guuu		
552	Jugialis liigia	DIACK WAITIUL	٥.1		excellent		l

Techo	Coiontifia Nome	Common Name	DBH (in choc)	Height	Condition	Londonoulu	Courseion
Tag NO.			(incries)	(leet)	Condition	Lanumark	Sovereign
353	Fraxinus americana	white ash	8.9		poor		
354	Fraxinus americana	white ash	8.5		fair		
355	Fraxinus americana	white ash	9.4		161 oveellent		
350	Jugians nigra	black walnut	12.5		excellent		
357	Fravinus amoricana	DIACK Walliut	10.0		fair		
250	Fraxinus americana	white ash	10.0		fair		
359	Prunus serotina	wild black cherry	8.0		ran		
361		scarlet oak	0.0		evcellent		
362	Prunus serotina	wild black cherry	9.2		good		
362	Fravinus americana	white ash	9.5		dead or dving		
364	Prunus serotina	wild black cherry	9.4		fair		
365	Prunus serotina	wild black cherry	8.2		good		
366		scarlet oak	18 5		excellent	v	
367	Illmus americana	American elm	10.5		good	1	
368	Fravinus americana	white ash	11 0		noor		
369		scarlet oak	9.4		excellent		
505	Picea nungens	Colorado blue spr	9. 4 8.7	20	good		
502		Colorado blue spr	5.7	16	evcellent		
502		Colorado blue spr	5.0	10	excellent		
504		Colorado blue spr	5.5	10	good		
505		swamn white oak	0.3	14	good		
505	Quercus bicolor	swamp white oak	9.5		good		
507	Quercus rubra	red oak	0.J Q 1		evcellent		
508	Quercus rubra Populus deltoides	cottonwood	0.1		excellent		
508	Populus deltoides	cottonwood	0.0		good		
509		American elm	0.5		good		
510	Carria ovata	chagbark bickory	24.0		good	v	
512	Carva ovata	shagbark hickory	24.0		evcellent	I	
512	Carva ovata	shagbark hickory	9.0		excellent		
517	Carva ovata	shagbark hickory	9.0		excellent		
515	Carva ovata	shagbark hickory	0.3 8 2		excellent		
516	Lilmus americana	American elm	0.2		fair		
517	luglans nigra	hlack walnut	18 3		good	v	
518	Illmus americana	American elm	10.5		good	1	
519	luglans nigra	hlack walnut	9.2		excellent		
520	Juglans nigra	black walnut	8.2		good		
520	Rhamnus cathartica	common bucktho	9.6		good		
521	luglans nigra	black walnut	9.0		good		
522		box elder	9. 4 8.5		noor		
523	luglans nigra	black walnut	9.6		fair		
525	Cercis canadensis	redbud	8.1		fair		
526	Juglans nigra	black walnut	12.2		fair		
527	Prunus serotina	wild black cherry	13.5		poor		
528	Juglans nigra	black walnut	15.2		fair		
529	Ulmus pumila	Siberian elm	10.6		fair		
530	Morus alba	white mulberry	12.0		fair		
531	Rhamnus cathartica	common bucktho	8.3		fair		
532	Juglans nigra	black walnut	8.0		good		
533	Juglans nigra	black walnut	8.0		fair		
534	Quercus macrocarpa	burr oak	12.8		fair		
535	Quercus macrocarpa	burr oak	19.9		excellent	Y	
536	Rhamnus cathartica	common bucktho	15.7		fair		
537	Quercus macrocarpa	burr oak	21.1		good	Y	
538	Ulmus americana	American elm	12.5		fair		
539	Quercus macrocarpa	burr oak	16.1		good	Y	
540	Quercus macrocarpa	burr oak	57.1		excellent		Y
541	Carva cordiformis	bitternut hickory	11.3		excellent		· · ·
L		y					Į

				Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
542	Quercus macrocarpa	burr oak	13.3	(,	good		
543	Ulmus americana	American elm	8.2		fair		
544	Acer negundo	box elder	16.5		poor	Y	
545	Juglans nigra	black walnut	11.5		good		
546	Populus deltoides	cottonwood	16.3		good		
547	Carya cordiformis	bitternut hickory	14.6		good		
548	Populus deltoides	cottonwood	9.4		good		
549	Acer negundo	box elder	8.9		fair		
550	Acer negundo	box elder	8.3		fair		
551	Acer negundo	box elder	10.5		fair		
552	Ulmus americana	American elm	8.3		good		
553	Populus deltoides	cottonwood	19.6		good		
568	Acer negundo	box elder	13.3		poor		
569	Juglans nigra	black walnut	8.9		good		
629	Juglans nigra	black walnut	11.5		excellent		
630	Juglans nigra	black walnut	17.9		excellent		
631	Acer negundo	box elder	12.4		fair		
632	Morus alba	white mulberry	10.4		fair		
633	Ulmus americana	American elm	13.7		excellent		
634	Prunus serotina	wild black cherry	9.9		fair		
635	Acer negundo	box elder	8.2		fair		
636	Ulmus americana	American eim	11.1		good		
637	Acer negundo	box elder	14.0		fair		
638	Prunus serotina	wild black cherry	9.8		fair	N	
639	Prunus serotina		26.4		tair	Ŷ	
640 641	Dimus americana	American eim	0.5 20.0		good	V	
641	Morus alba	white mulherry	20.0		poor	ř	
642	Phampus cathartica	common bucktho	12.7		fair		
643		white mulherry	0.0 12.0		rand		
645	Illmus americana	American elm	8.0		good		
702	Carva glabra	nignut hickory	14.0		evcellent		
702	Carva glabra	nignut hickory	14.0		good	Y	
704	Quercus alba	white oak	27.2		good	Y	
705	Quercus coccinea	scarlet oak	8.9		good	•	
706	Quercus alba	white oak	21.8		good	Y	
707	Quercus rubra	red oak	14.2		excellent	-	
708	Prunus serotina	wild black cherry	12.0		poor		
709	Prunus serotina	wild black cherry	12.6		fair		
710	Carya glabra	pignut hickory	12.2		fair		
711	Carya glabra	pignut hickory	10.6		excellent		
712	Ulmus americana	American elm	8.2		excellent		
713	Quercus rubra	red oak	9.4		excellent		
714	Quercus rubra	red oak	10.6		excellent		
715	Quercus rubra	red oak	10.3		excellent		
716	Populus grandidentata	bigtooth aspen	9.5		excellent		
717	Quercus rubra	red oak	19.9		excellent	Y	
718	Quercus rubra	red oak	12.0		excellent		
719	Prunus serotina	wild black cherry	11.3		good		
720	Prunus serotina	wild black cherry	9.3		good		
759	Juglans nigra	black walnut	18.9		excellent	Y	
760	Ulmus rubra	slippery elm	15.3		fair		
761	Juglans nigra	black walnut	13.9		good		
762	Prunus serotina	wild black cherry	11.3		good		
763	Juglans nigra	black walnut	27.8		good	Y	
764	Juglans nigra	black walnut	16.7		fair		
765	Juglans nigra	black walnut	21.9		fair	Y	
767	Juglans nigra	black walnut	10.0		excellent		

Techo	Coiontifia Nomo	Common Name	DBH (in choce)	Height	Condition	Landmank	Courseion
Tag NO.		Common Name	(incries)	(leet)	Condition	Lanumark	Sovereign
768	Jugians nigra	black walnut	12.9		excellent		
709	Jugians nigra	black walnut	9.0		good		
770	Jugians nigra	black Walnut	11.7		fair		
702		wild black cherry	9.1		fair		
783	Prunus avium	bird cherry	10.9		nair	v	
704		nignut hickony	20.5		goou	1 V	
786	Cal ya glabi a Quercus rubra	red oak	20.5		excellent	I	
787	Quercus rubra	red oak	10.4		good		
707	Quercus rubra	red oak	10.0		evcellent	v	
789	Tilia americana	hasswood	16.1		good	I	
700	Carva cordiformis	hitternut hickory	15.0		excellent		
791	luglans nigra	black walnut	9.1		fair		
792	luglans nigra	black walnut	9.1		good		
793		box elder	85		noor		
794	luglans nigra	black walnut	9.5		excellent		
795	Juglans nigra	black walnut	10.7		excellent		
796		box elder	85		noor		
797	Prunus serotina	wild black cherry	18.7		fair	v	
798	Carva cordiformis	hitternut hickory	10.7		good	I	
700	Tilia americana	basswood	18.2		evcellent	v	
800		red oak	12.5		good	I	
800	Carva glabra	nignut hickory	26.0		evcellent	v	
802	Lilmus americana	American elm	20.0		good	I	
802	Canva glabra	nignut bickony	12 5		good		
803	Carva glabra	pignut hickory	14.0		good		
004 005	Cal ya glabi a	wild black chorry	14.0		good dood or dving		
805		Amorican olm	0.2		dead of dying		
800	Carva glabra	nignut hickory	17.0		fair	v	
807	Carya giabra	wild black cherry	17.0		noor	1	
808 81 <i>1</i>		white oak	9.0 17 5		pood	v	
827	Carva glabra	nignut bickony	27.5		evcellent	1	
830	Prunus serotina	wild black cherry	8.0		good		
840		red oak	18.8		good	v	
8/1	Prunus serotina	wild black cherry	13.0		dead or dving	L.	
842	Ouercus rubra	red oak	17.2		excellent	v	
8/3	Prunus serotina	wild black cherry	10.5		noor	L.	
844	Quercus rubra	red oak	17.5		good	v	
845		American elm	11.5		noor	L.	
846	Ouercus rubra	red oak	9.7		fair		
847	Quercus rubra	red oak	12.2		good		
848	Quercus rubra	red oak	8.4		good		
849	Carva glabra	pignut hickory	8.2		fair		
850	Prunus serotina	wild black cherry	14 5		noor		
851	Carva cordiformis	bitternut hickory	9,2		good		
852	Quercus rubra	red oak	20.1		excellent	Y	
853	Quercus rubra	red oak	20.1		excellent	Ŷ	
854	Tilia americana	basswood	9,1		excellent	•	
856	Ouercus rubra	red oak	18.6		excellent	Ŷ	
857	Quercus rubra	red oak	17.2		good	Ŷ	
858	Ouercus rubra	red oak	17.1		excellent	Ŷ	
859	Quercus rubra	red oak	17.0		good	Ŷ	
860	Quercus rubra	red oak	21.0		good	Y	
861	Quercus rubra	red oak	12.8		poor		
862	Quercus rubra	red oak	11 2		good		
863	Quercus rubra	red oak	15.6		good		
864	Ulmus americana	American elm	17.4		good		
865	Ulmus americana	American elm	10 5		fair		
			10.5				Į

Tag No.	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
966		Amorican olm	0.2	(1000)	fair	Landmark	Sovereign
867	Ullmus americana	American elm	0.5 9 5		fair		
868	Carva cordiformis	hitternut hickory	9.5 8.4		good		
869	Quercus rubra	red oak	10.4		excellent		
870	Ulmus americana	American elm	12.3		fair		
871	Carva ovata	shagbark hickory	9.1		excellent		
872	Quercus rubra	red oak	17.2		excellent	Y	
873	Quercus rubra	red oak	16.3		excellent	Ŷ	
874	Quercus rubra	red oak	17.1		excellent	Y	
876	Quercus rubra	red oak	9.4		excellent		
880	Quercus rubra	red oak	39.3		excellent	Y	
881	Quercus rubra	red oak	33.4		excellent	Y	
882	Acer saccharum	sugar maple	12.5		excellent		
883	Quercus rubra	red oak	23.5		excellent	Y	
884	Tilia americana	basswood	11.8		excellent		
885	Carya glabra	pignut hickory	18.6		good	Y	
886	Ostrya virginiana	ironwood	8.0		good		
888	Tilia americana	basswood	18.9		excellent	Y	
891	Sassafras albidum	sassafras	8.4		good		
892	Ulmus americana	American elm	10.5		fair		
893	Tilia americana	basswood	17.0		excellent		
894	Prunus serotina	wild black cherry	8.8		good		
895	Carya ovata	shagbark hickory	22.5		excellent	Y	
896	Ulmus americana	American elm	10.4		good		
897	Carya ovata	shagbark hickory	16.1		good	Y	
898	Carya ovata	shagbark hickory	12.8		excellent		
899	Carya ovata	shagbark hickory	15.3		excellent		
900	Acer saccharum	sugar maple	8.7		excellent		
901	Carya ovata	shagbark hickory	15.5		excellent		
902	Carya glabra	pignut hickory	15.7		excellent		
903	Quercus alba	white oak	20.0		excellent	Y	
904	Tilia americana	basswood	9.6		good		
905	Prunus serotina	wild black cherry	14.4		fair		
906	Tilia americana	basswood	29.9		excellent	Y	
907	Prunus serotina	wild black cherry	15.5		fair		
908	Prunus serotina	wild black cherry	11.6		good		
909	Tilia americana	basswood	11.2		good		
912	Prunus serotina	wild black cherry	9.8		good		
913	Prunus avium	bird cherry	14.0		poor	Ŷ	
914	Olmus americana	American eim	8.0		Tair	V	
915	Carya glabra	pignut hickory	17.8		excellent	ř	
916	Carya glabra	Amorican alm	22.0		excellent	Ŷ	
917		American elm	14.2		poor		
918	Carva ovata	American eim	8.5		poor	V	
919		Amorican olm	21.0		excellent	ř	
920		chagbark bickory	0.2		good	V	
921	Carva cordiformic	hittorput hickory	11.0		goou	I	
922		Amorican olm	11.5		excellent		
925	Dinus americana	wild black chorry	12.0		good		
924	Tilia americana	hasswood	22.0		evcellent	v	
926	Ouercus rubra	red oak	19 5		excellent	Y	
927	Prunus serotina	wild black cherry	12.5		noor	1	
928	Ulmus americana	American elm	16.0		good		
929	luglans nigra	black walnut	19.0		good	٧	
930	Ulmus americana	American elm	10 5		good	•	
931	Ulmus americana	American elm	8.2		good		
932	Juglans nigra	black walnut	10.3		good		
			10.0		0000		l

Tag No.	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
933	Tilia americana	basswood	16.2	(/	excellent		
934	Tilia americana	basswood	10.2		excellent		
935	Ouercus rubra	red oak	18.3		excellent	Y	
936	Prunus serotina	wild black cherry	9.5		good		
937	Quercus alba	, white oak	18.2		excellent	Y	
938	Carya glabra	pignut hickory	15.0		excellent		
939	Carya ovata	shagbark hickory	12.5		good		
940	Carya glabra	pignut hickory	23.5		excellent	Y	
941	Carya glabra	pignut hickory	22.0		excellent	Y	
942	Ulmus americana	American elm	10.9		good		
943	Carya glabra	pignut hickory	16.3		good	Y	
944	Carya ovata	shagbark hickory	18.2		good	Y	
945	Quercus rubra	red oak	10.2		good		
946	Carya glabra	pignut hickory	15.5		good		
947	Prunus serotina	wild black cherry	8.5		poor		
948	Prunus avium	bird cherry	14.0		excellent	Y	
949	Acer saccharum	sugar maple	18.5		good	Y	
950	Quercus rubra	red oak	11.3		excellent		
951	Tilia americana	basswood	8.1		excellent		
952	Prunus serotina	wild black cherry	15.8		fair		
953	Tilia americana	basswood	19.7		excellent	Y	
954	Tilia americana	basswood	15.5		good		
955	Tilia americana	basswood	16.5		good		
956	Prunus serotina	wild black cherry	9.7		fair		
957	Ulmus americana	American elm	10.0		fair		
958	Quercus rubra	red oak	9.0		good		
959	Ulmus americana	American elm	12.8		good		
960	Quercus alba	white oak	16.8		excellent	Y	
961	Carya glabra	pignut hickory	23.5		excellent	Y	
962	Ulmus americana	American elm	14.6		good		
963	Tilia americana	basswood	13.2		excellent		
964	Tilia americana	basswood	12.0		excellent		
965	Tilia americana	basswood	12.0		excellent		
966	Tilla americana	basswood	9.3		excellent		
967		Amorican alm	8.0		excellent		
968	Olmus americana	American eim	9.2		good	V	
969	Quercus rubra	red oak	17.5		excellent	ř	
970	Quercus alba	bittorput bickory	11.9		excellent		
971		pigput bickory	0.2		excellent		
972	Cal ya glabi a Quercus alba	white oak	0.2		excellent		
973	Quercus alba	white oak	10.2		good	v	
974	Quercus alba	red oak	14.5		good	1	
976	Quercus rubra	red oak	15.3		evcellent		
977	Quercus rubra	red oak	17.5		excellent	v	
978	Carva ovata	shaghark hickory	8.1		good		
979	Carva ovata	shagbark hickory	8.8		excellent		
980	Illmus americana	American elm	9.0		good		
981	Ouercus rubra	red oak	15.9		good		
982	Quercus rubra	red oak	9.7		good		
983	Quercus alba	white oak	27.9		excellent	Y	
984	Tilia americana	basswood	8.3		poor	· ·	
985	Quercus rubra	red oak	13.0		good		
986	Quercus rubra	red oak	11.0		excellent		
987	Quercus alba	white oak	16.8		good	Y	
988	Quercus rubra	red oak	9.0		good	· ·	
989	Quercus rubra	red oak	17.5		good	Y	
990	Tilia americana	basswood	15.4		excellent	· ·	
L	-	-					

			рвн	Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
991	Tilia americana	basswood	12.0		excellent		
992	Quercus alba	white oak	16.2		good	Y	
993	Tilia americana	basswood	15.5		excellent		
994	Tilia americana	basswood	18.0		good	Y	
995	Tilia americana	basswood	12.0		good		
996	Carya glabra	pignut hickory	9.0		good		
997	Tilia americana	basswood	12.5		excellent		
998	Carya ovata	shagbark hickory	8.0		good		
999	Tilia americana	basswood	9.0		good		
1000	Tilia americana	basswood	8.0		excellent		
1302	Carya ovata	shagbark hickory	12.0		excellent		
1303	Tilia americana	basswood	9.2		good		
1304	Acer saccharum	sugar maple	9.2		excellent		
1305	Tilia americana	basswood	10.4		good		
1306	Tilia americana	basswood	11.0		good		
1307	Acer saccharum	sugar maple	9.5		excellent		
1308	Tilia americana	basswood	12.0		excellent		
1309	Prunus serotina	wild black cherry	9.5		poor		
1310	Tilia americana	basswood	8.5		fair		
1311	Tilia americana	basswood	16.5		good		
1312	Ulmus americana	American elm	9.5		fair		
1313	Tilia americana	basswood	15.2		excellent		
1314	Prunus serotina	wild black cherry	9.2		good		
1315	Prunus serotina	wild black cherry	8.5		poor		
1316	Carya corditormis	bitternut hickory	9.8		good		
1317	Tilia americana	basswood	11.8		good		
1318	Tilia americana	basswood	10.3		fair		
1319	Tilia americana	basswood	10.8		good	, v	
1320	Carya glabra	pignut hickory	16.8		excellent	Y	
1321	Celtis occidentalis	hackberry	17.3		good		
1322		Dasswood	10.8		excellent		
1323	Carya glabra	red eak	15.0		good		
1225	Quercus rubra	red oak	2 5		excellent		
1325		red oak	17.6		excellent	v	
1320	luglans nigra	black walnut	19.5		excellent	Y	
1327	Illmus americana	American elm	95		good	I	
1329	Ulmus americana	American elm	8.0		noor		
1330	Ulmus americana	American elm	9.5		fair		
1331	Ulmus americana	American elm	11.0		good		
1332	Morus alba	white mulberry	8.5		good		
1333	Morus alba	, white mulberry	8.5		good		
1334	Morus alba	white mulberry	9.3		good		
1335	Carya cordiformis	bitternut hickory	8.8		excellent		
1336	Ulmus americana	American elm	15.2		good		
1337	Quercus rubra	red oak	12.0		fair		
1338	Prunus serotina	wild black cherry	13.5		fair		
1339	Prunus serotina	wild black cherry	10.8		poor		
1340	Quercus rubra	red oak	9.5		fair		
1341	Prunus serotina	wild black cherry	24.0		poor	Y	
1342	Tilia americana	basswood	15.2		excellent		
1343	Tilia americana	basswood	16.5		excellent		
1344	Prunus serotina	wild black cherry	8.2		poor		
1345	Quercus alba	white oak	20.8		excellent	Y	
1346	Carya cordiformis	bitternut hickory	15.5		good		
1347	Carya glabra	pignut hickory	15.2		good		
1348	Tilia americana	basswood	10.0		good		
1349	Tilia americana	basswood	18.4		good	Y	

			DBH	Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
1350	Prunus serotina	wild black cherry	10.0		poor		
1351	Carya cordiformis	bitternut hickory	9.3		excellent		
1352	Tilia americana	basswood	8.8		good		
1353	Prunus serotina	wild black cherry	8.8		fair		
1354	Prunus serotina	wild black cherry	8.3		fair		
1355	Prunus serotina	wild black cherry	13.0		fair		
1356	Olmus americana	American eim	8.7		fair	N N	
1357	Acer saccharum	sugar maple	10.7		excellent	Ŷ	
1358	Tilia americana	basswood	11.5		good		
1359	Tilla americana	Dasswood	17.8		good	V	
1300	Carya Ovala	shagbark flickory	25.0		excellent	ř V	
1301	Tilia americana	basswood	21.5		excellent	ř	
1262	Tilia americana	basswood	10.5		excellent		
1264		pigput bickory	9.0		excellent	V	
1304	Cal ya glabi a	Amorican alm	10.9		excellent	I	
1266	Carva cordiformic	American eim	12.5		excellent	V	
1267		bitternut hickory	17.5		excellent	ř V	
1269		red maple	19.5		guuu	1	
1260	Tilia amoricana	hasswood	0.J		excellent		
1309	Tilia americana	basswood	14.5		excellent		
1370	Carua cordiformic	basswood	15.0		excellent		
1371		billernut nickory	10.0		excellent		
1372		basswood	8.8 12.7		libi		
1373	Quercus rubra	red oak	13.7		good		
1374	Quercus rubra	red oak	14.9		fair	V	
1375	Quercus rubra	red oak	16.7		lilli	ř V	
1370	Quercus rubra	red oak	10.7		guuu	ř V	
1270	Acor cacebarum	cugar manla	23.0		excellent	I	
1370		sugar maple	14.0		excellent	V	
1200	Carva cordiformic	hittorput bickony	20.U		fair	I	
1201	Carya coruitorniis	wild black chorry	11.5		nan		
1282	Carva cordiformis	hitternut hickory	11.5		poor		
1382		American elm	21.0		fair	v	
138/	Carva glabra	nignut hickory	11.0		evcellent	1	
1385	Quercus alba	white oak	31.8		excellent	v	
1386	Ulmus americana	American elm	8.0		excellent	I.	
1387	Carva glabra	nignut hickory	14 5		excellent		
1388	Quercus rubra	red oak	9.0		excellent		
1389	Tilia americana	basswood	19.0		good	Y	
1390	Ouercus rubra	red oak	20.2		excellent	Ŷ	
1391	Prunus serotina	wild black cherry	10.2		poor	•	
1392	Quercus rubra	red oak	14.2		good		
1393	Tilia americana	basswood	11.5		excellent		
1395	Carva cordiformis	bitternut hickory	10.5		good		
1396	, Carva cordiformis	, bitternut hickory	10.2		good		
1397	Tilia americana	basswood	8.2		fair		
1401	Tilia americana	basswood	15.8		fair		
1402	Tilia americana	basswood	8.5		good		
1403	Tilia americana	basswood	9.0		good		
1404	Ulmus americana	American elm	8.0		fair		
1405	Ulmus americana	American elm	11.0		good		
1406	Carya ovata	shagbark hickorv	21.6		excellent	Y	
1407	Tilia americana	basswood	17.0		excellent		
1408	Tilia americana	basswood	8.5		excellent		
1409	Tilia americana	basswood	15.8		good		
1410	Acer saccharum	sugar maple	11.0		excellent		
1411	Tilia americana	basswood	11.5		good		
l					-		

			DBH	Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
1412	Acer saccharum	sugar maple	8.1		good		
1413	Tilia americana	basswood	12.6		fair		
1414	Tilia americana	basswood	13.7		good		
1415	Prunus serotina	wild black cherry	10.5		fair		
1416	Acer saccharum	sugar maple	9.8		excellent		
1417	Acer saccharum	sugar maple	10.3		good		
1418	Acer saccharum	sugar maple	9.5		excellent		
1419	Acer rubrum	red maple	16.8		good	Y	
1420	Acer rubrum	red maple	8.2		excellent		
1421	Tilia americana	basswood	13.5		poor		
1422	Tilia americana	basswood	17.3		good		
1423	Tilia americana	basswood	15.5		good		
1424	Tilia americana	basswood	9.8		good		
1425	Tilia americana	basswood	10.8		good		
1426	Quercus rubra	red oak	14.3		good		
1427	Prunus serotina	wild black cherry	8.8		good		
1428	Carya glabra	pignut hickory	21.3		excellent	Y	
1429	Carya cordiformis	bitternut hickory	13.8		good		
1430	Quercus rubra	red oak	10.0		good		
1431	Quercus rubra	red oak	14.0		poor		
1432	Tilia americana	basswood	16.2		fair		
1433	Tilia americana	basswood	23.0		excellent	Y	
1434	Ulmus americana	American elm	8.5		fair		
1435	Quercus rubra	red oak	13.0		good		
1436	Juglans nigra	black walnut	12.0		good		
1437	Fraxinus pennsylvanica	green ash	9.0		poor		
1438	Juglans nigra	black walnut	9.5		fair		
1439	Juglans nigra	black walnut	11.0		good		
1440	Ulmus americana	American elm	9.0		good		
1441	Carya cordiformis	bitternut hickory	9.0		good		
1442	Carya cordiformis	bitternut hickory	9.0		good		
1443	Carya cordiformis	bitternut hickory	8.1		good		
1444	Tilia americana	basswood	8.0		good		
1445	Ulmus americana	American elm	11.6		fair		
1446	Prunus serotina	wild black cherry	16.3		good		
1447	Tilia americana	basswood	16.2		fair		
1448	Tilia americana	basswood	11.0		fair		
1449	Carya glabra	pignut hickory	20.0		excellent	Y	
1450	Quercus rubra	red oak	8.0		excellent		
1451	Quercus rubra	red oak	14.0		good		
1452	Quercus rubra	red oak	14.5		good		
1453	Tilia americana	basswood	14.5		good		
1454	Ulmus americana	American elm	10.1		good		
1455	Juglans nigra	black walnut	16.0		good		
1456	Juglans nigra	black walnut	13.1		good		
1457	Tilia americana	basswood	17.5		good		
1458	Tilia americana	basswood	18.5		fair	Y	
1459	Carya ovata	shagbark hickory	20.5		excellent	Y	
1460	Carya ovata	shagbark hickory	17.6		excellent	Y	
1461	Tilia americana	basswood	17.6		good		
1462	Carya ovata	shagbark hickory	17.0		excellent	Y	
1463	Tilia americana	basswood	13.8		good		
1464	Tilia americana	basswood	12.0		good		
1465	Tilia americana	basswood	8.0		good		
1466	Tilia americana	basswood	11.6		good		
1467	Tilia americana	basswood	15.5		good		
1468	Ulmus americana	American elm	15.0		good		
1469	Tilia americana	basswood	25.0		good	Y	

			DBH	Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
1470	Tilia americana	basswood	12.8		good		
1471	Tilia americana	basswood	12.9		good		
1472	Tilia americana	basswood	17.0		good		
1473	Acer rubrum	red maple	13.8		good		
1474	Acer rubrum	red maple	8.2		good		
1475	Tilia americana	basswood	15.0		good		
1476	Prunus serotina	wild black cherry	17.5		fair		
1477	Tilia americana	basswood	15.1		fair		
1478	Tilia americana	basswood	11.3		good		
1479	Tilia americana	basswood	17.2		good		
1480	Acer nigrum	black maple	8.0		good		
1481	Prunus serotina	wild black cherry	10.5		good		
1482	Prunus serotina	wild black cherry	8.5		good		
1483	Acer rubrum	red maple	14.0		fair		
1484	Tilia americana	basswood	11.3		fair		
1485	Prunus serotina	wild black cherry	9.0		good		
1486	Ulmus americana	American elm	9.5		good		
1487	Ulmus americana	American elm	8.0		good		
1488	Tilia americana	basswood	15.7		good		
1489	Carya cordiformis	bitternut hickory	12.2		good		
1490	Acer rubrum	red maple	9.0		good		
1491	Acer rubrum	red maple	15.0		good		
1492	Acer rubrum	red maple	9.2		excellent		
1493	Tilia americana	basswood	12.5		excellent		
1494	Carya cordiformis	bitternut hickory	10.0		excellent		
1495	Tilia americana	basswood	8.8		good		
1496	Carya cordiformis	bitternut hickory	9.9		good		
1497	Tilia americana	basswood	11.2		good		
1498	Tilia americana	basswood	11.1		good		
1499	Tilia americana	basswood	10.2		good		
1501	Tilia americana	basswood	12.0		good		
1502	Tilia americana	basswood	16.2		good		
1503	Quercus alba	white oak	13.1		good		
1504	Tilia americana	basswood	12.8		good		
1505	Tilia americana	basswood	13.3		good		
1506	Tilia americana	basswood	13.5		good		
1507	Tilia americana	basswood	13.6		good		
1508	Tilia americana	basswood	11.2		good		
1509	Carya cordiformis	bitternut hickory	8.0		good		
1510	Tilia americana	basswood	10.4		good		
1511	Tilia americana	basswood	12.5		good		
1512	Tilia americana	basswood	14.2		good		
1513	Tilia americana	basswood	12.6		fair		
1514	Quercus alba	white oak	22.5		excellent	Y	
1515	Carya ovata	shagbark hickory	13.2		excellent		
1516	Quercus alba	white oak	17.0		excellent	Y	
1517	Tilia americana	basswood	11.5		good		
1518	Tilia americana	basswood	17.8		good		
1519	Tilia americana	basswood	8.8		good		
1520	Tilia americana	basswood	8.7		fair		
1521	Quercus macrocarpa	burr oak	23.5		excellent	Y	
1522	Quercus macrocarpa	burr oak	34.0		excellent	Y	
1523	Quercus macrocarpa	burr oak	13.1		good		
1524	Quercus macrocarpa	burr oak	25.6		fair	Y	
1525	Tilia americana	basswood	16.0		good		
1526	Tilia americana	basswood	9.9		poor		
1527	Tilia americana	basswood	9.5		fair		
1528	Ulmus americana	American elm	13.7		poor		
I							

				Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
1529	Ulmus americana	American elm	19.8	(,	excellent	Y	
1530	Tilia americana	basswood	18.0		good	Ŷ	
1531	Tilia americana	basswood	8.0		fair		
1532	Prunus serotina	wild black cherry	8.0		fair		
1533	Carya cordiformis	bitternut hickory	21.5		good	Y	
1534	Quercus rubra	red oak	23.1		excellent	Y	
1535	Carya ovata	shagbark hickory	8.0		excellent		
1536	Quercus alba	white oak	12.7		good		
1537	Tilia americana	basswood	9.0		fair		
1538	Carya glabra	pignut hickory	11.2		good		
1539	Carya cordiformis	bitternut hickory	11.3		good		
1540	Carya cordiformis	bitternut hickory	9.4		fair		
1541	Prunus serotina	wild black cherry	12.4		good		
1542	Tilia americana	basswood	11.0		good		
1543	Quercus rubra	red oak	23.5		good	Y	
1544	Tilia americana	basswood	14.1		good		
1545	Tilia americana	basswood	22.2		fair	Y	
1546	Prunus serotina	wild black cherry	10.0		poor		
1547	Carya cordiformis	bitternut hickory	10.7		excellent		
1548	Tilia americana	basswood	9.8		good		
1549	Tilia americana	basswood	12.8		excellent		
1550	Carya cordiformis	bitternut hickory	17.9		excellent	Y	
1551	Quercus alba	white oak	28.1		good	Y	
1552	Tilia americana	basswood	9.6		excellent		
1553	Quercus macrocarpa	burr oak	11.3		good		
1554	Tilia americana	basswood	15.2		good		
1555	l ilia americana	basswood	9.7		good		
1556	Tilia americana	basswood	11.4		fair		
1557	Tilia americana	basswood	13.7		excellent		
1558	Tilla americana	Dasswood	9.9		good	V	
1559	Carya giabra	pignut nickory	20.1		good	ř	
1560	Quercus alba	white oak	14.8		excellent		
1562		pigput bickory	9.4 1/1 2		good		
1562	Tilia americana	basswood	14.J Q 1		good		
1564	Tilia americana	basswood	9.1		excellent		
1565	Quercus rubra	red oak	20.2		good	v	
1566	Tilia americana	hasswood	8.0		good		
1567	Quercus rubra	red oak	16.9		good	Y	
1568	Tilia americana	basswood	8.7		poor	•	
1569	Tilia americana	basswood	20.1		good	Y	
1570	Tilia americana	basswood	14.3		poor		
1571	Tilia americana	basswood	10.1		fair		
1572	Carya ovata	shagbark hickory	22.8		excellent	Y	
1573	Tilia americana	basswood	16.9		fair		
1574	Quercus rubra	red oak	25.6		good	Y	
1575	Tilia americana	basswood	10.2		good		
1576	Tilia americana	basswood	11.3		good		
1577	Carya ovata	shagbark hickory	20.5		good	Y	
1578	Carya cordiformis	bitternut hickory	13.4		excellent		
1579	Tilia americana	basswood	11.3		fair		
1580	Tilia americana	basswood	10.5		good		
1581	Ulmus rubra	slippery elm	8.7		fair		
1582	Tilia americana	basswood	8.3		fair		
1583	Tilia americana	basswood	8.6		fair		
1584	Carya cordiformis	bitternut hickory	10.6		excellent		
1585	Tilia americana	basswood	8.7		good		
1586	Carya ovata	shagbark hickory	19.3		excellent	Y	

			ррц	Hoight			
Τασ Νο	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
1507	Tilia amoricana	basswood	0.7	(ieet)	good	Lanumark	Jovereign
1588		slipperv elm	9.7		evcellent		
1589	Carva cordiformis	hitternut hickory	15.0		excellent		
1590	Tilia americana	basswood	28.0		good	v	
1591	Tilia americana	basswood	10.6		noor	I.	
1502	Tilia americana	basswood	12.0		fair		
1502	Tilia americana	basswood	16.4		riar		
1593	Fravinus americana	white ash	10.4		good		
1505	luglans nigra	black walnut	12.0		good		
1595	Tilia americana	back walling	12.0		fair		
1507		American elm	11.2		ran		
1597	Tilia amoricana	American eim	0.2		good		
1590		cattonwood	9.5		excellent		
1599	Carua cordiformic	bittorput bickory	41.5		excellent		
1600		bitternut nickory	0.5 25.2		excellent	V	
1001			25.2		good	Ť	
1602	Olmus americana	American eim	9.8		good	V	
1603	Quercus rubra	red Oak	17.4		good	ř	
1604		Ditternut nickory	10.9		good		
1605	Quercus rubra	red oak	9.2		good		
1606	Carya glabra	pignut nickory	12.8		good		
1607	Jugians nigra	black walnut	10.0		excellent		
1608	Tilia americana	basswood	9.4		good		
1609	Tilia americana	basswood	9.8		good		
1610	Tilia americana	basswood	11.3		fair		
1611	Tilia americana	basswood	12.6		fair		
1612	Tilia americana	basswood	11.9		good		
1613	Carya glabra	pignut hickory	17.7		excellent	Y	
1614	Ulmus rubra	slippery elm	9.8		good		
1615	Tilia americana	basswood	12.8		good		
1616	Tilia americana	basswood	8.9		good		
1617	Carya cordiformis	bitternut hickory	14.2		good		
1618	Tilia americana	basswood	17.7		excellent		
1619	Tilia americana	basswood	13.0		good		
1620	Carya glabra	pignut hickory	16.9		good	Y	
1621	Carya ovata	shagbark hickory	23.9		excellent	Y	
1622	Tilia americana	basswood	10.4		fair		
1623	Tilia americana	basswood	12.2		excellent		
1624	Quercus rubra	red oak	11.3		excellent		
1625	Ulmus americana	American elm	11.1		good		
1626	Carya ovata	shagbark hickory	21.3		excellent	Y	
1627	Tilia americana	basswood	8.3		good		
1628	Quercus alba	white oak	12.8		excellent		
1629	Carya ovata	shagbark hickory	20.9		excellent	Y	
1630	Tilia americana	basswood	20.8		good	Y	
1631	Tilia americana	basswood	10.2		good		
1632	Tilia americana	basswood	13.1		excellent		
1633	Tilia americana	basswood	10.8		good		
1634	Tilia americana	basswood	15.0		excellent		
1635	Tilia americana	basswood	8.6		good		
1636	Tilia americana	basswood	14.4		excellent		
1637	Tilia americana	basswood	25.3		good	Y	
1638	Tilia americana	basswood	9.4		good		
1639	Tilia americana	basswood	11.0		fair		
1640	Tilia americana	basswood	14.7		excellent		
1641	Tilia americana	basswood	8.6		good		
1642	Tilia americana	basswood	12.8		excellent		
1643	Quercus rubra	red oak	15.6		excellent		
1644	Tilia americana	basswood	18.1		excellent	Y	

Teable		Common Nam	DBH (inchas)	Height	Condition	Landmonte	Courseiter
Tag No.		common Name	(inches)	(reet)	Condition	Lanomark	Sovereign
1645	Tilia americana	basswood	15.9		tair		
1646	Ulmus americana	American elm	9.3		good	V	
1647	Canua cordiformis	American eim	21.1		good	ř	
1040		rod ook	0.0 22.0		goou	v	
1650	Carva glabra	nignut hickony	23.0		excellent	ř	
1650	Tilia amoricana	basswood	9.7 12 E		good		
1652		shagbark bickory	12.0		good		
1653	Carva glabra	nignut hickory	10.4		good		
1654		red oak	25.0		good	v	
1655	Illmus americana	American elm	11.4		fair	1	
1656	Prunus serotina	wild black cherry	10.6		fair		
1657	Quercus rubra	red oak	11.1		good		
1658	Tilia americana	basswood	14.3		fair		
1659	Tilia americana	basswood	18.0		good	Y	
1660	Carva cordiformis	bitternut hickory	9.7		excellent		
1661	Tilia americana	basswood	19.3		excellent	Y	
1662	Tilia americana	basswood	16.7		excellent		
1663	Tilia americana	basswood	10.8		excellent		
1664	Tilia americana	basswood	9.1		excellent		
1665	Tilia americana	basswood	14.2		excellent		
1666	Tilia americana	basswood	9.1		poor		
1667	Tilia americana	basswood	8.3		good		
1668	Tilia americana	basswood	15.6		excellent		
1669	Tilia americana	basswood	11.0		good		
1670	Prunus serotina	wild black cherry	9.2		fair		
1671	Prunus serotina	wild black cherry	9.0		excellent		
1672	Carya ovata	shagbark hickory	25.1		excellent	Y	
1673	Tilia americana	basswood	17.8		excellent		
1674	Tilia americana	basswood	8.6		fair		
1675	Ostrya virginiana	ironwood	9.1		good		
1676	Tilia americana	basswood	9.6		good		
1677	Tilia americana	basswood	16.9		good		
1678	Tilia americana	basswood	11.0		good		
1679	Tilia americana	basswood	9.8		excellent		
1680	Carya cordiformis	bitternut hickory	11.7		excellent		
1681	Quercus rubra	red oak	12.8		excellent		
1682	Prunus serotina	wild black cherry	8.3		poor		
1683	Ulmus americana	American elm	8.5		good		
1684	Quercus rubra	red oak	10.1		excellent		
1685	Tilia americana	basswood	12.3		good		
1686	Carya ovata	shagbark hickory	15.0		good		
1687	Quercus alba	white oak	15.9		good		
1688	Quercus rubra	red oak	10.9		good		
1689	Ulmus americana	American elm	14.1		excellent		
1690	Juglans nigra	black walnut	19.0		excellent	Y	
1691	Ulmus americana	American elm	10.3		excellent		
1692	Carya cordiformis	bitternut hickory	17.4		excellent	Y	
1693	Carya ovata	shagbark hickory	10.6		good		
1694	Quercus rubra	red oak	16.7		excellent	Y	
1695	Tilia americana	basswood	15.1		excellent		
1696	Quercus macrocarpa	burr oak	9.5		good		
1697	Carya corditormis	bitternut hickory	11.8		excellent		
1698	Quercus rubra	red oak	9.3		excellent		
1700	Jugians nigra	DIACK WAINUT	15.6		excellent		
1700	Quercus rubra	red oak	24.3		excellent	Y	
1701	Ouerous americana	American elm	8.1		good	V	
1702	Quercus rubra	red oak	18.3		good	Y	

			DBH	Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
1703	Quercus rubra	red oak	14.8		excellent		
1704	Ulmus americana	American elm	11.6		excellent		
1705	Juglans nigra	black walnut	11.2		good		
1706	Quercus rubra	red oak	20.9		good	Y	
1707	Quercus rubra	red oak	11.2		excellent		
1708	Carya cordiformis	bitternut hickory	8.7		excellent		
1709	Quercus rubra	red oak	12.8		excellent		
1710	Quercus macrocarpa	burr oak	11.7		excellent		
1711	Juglans nigra	black walnut	12.1		excellent		
1712	Carya cordiformis	bitternut hickory	11.8		excellent		
1/13	Carya cordiformis	bitternut hickory	9.5		good		
1714	Quercus macrocarpa	burr oak	18.4		excellent	Ŷ	
1/15	Tilia americana	basswood	22.8		good	Y	
1/16	Tilia americana	basswood	10.6		good		
1/1/	l ilia americana	basswood	9.2		fair		
1718	Carya cordiformis	bitternut hickory	10.8		excellent		
1719	Quercus macrocarpa	burr oak	9.8		good		
1720	Tilia americana	basswood	14.1		good		
1721	Ulmus americana	American elm	8.5		good		
1722	Carya cordiformis	bitternut hickory	10.4		excellent		
1723	Carya cordiformis	bitternut hickory	9.1		excellent		
1724	Carya cordiformis	bitternut hickory	10.0		good		
1725	Ulmus americana	American elm	10.5		excellent		
1726	Ulmus americana	American elm	8.3		excellent		
1727	Carya glabra	pignut hickory	18.3		good	Y	
1728	Carya glabra	pignut hickory	11.9		excellent		
1729	Quercus rubra	red oak	9.1		excellent		
1730	Carya ovata	shagbark hickory	22.4		excellent	Y	
1731	Carya ovata	shagbark hickory	22.4		excellent	Y	
1732	Ulmus americana	American elm	15.4		excellent		
1733	Carya ovata	shagbark hickory	17.7		good	Y	
1734	Carya ovata	shagbark hickory	13.5		excellent		
1735	Tilia americana	basswood	13.8		good		
1736	Tilia americana	basswood	12.8		good		
1737	Carya ovata	shagbark hickory	21.8		excellent	Y	
1738	Tilia americana	basswood	9.9		fair		
1739	Tilia americana	basswood	10.4		excellent		
1740	Tilia americana	basswood	10.8		fair		
1741	Carya ovata	shagbark hickory	18.9		excellent	Y	
1742	Prunus serotina	wild black cherry	8.1		excellent		
1743	Ostrya virginiana	ironwood	8.2		excellent		
1744	Tilia americana	basswood	10.7		excellent		
1745	Carya glabra	pignut hickory	13.4		excellent		
1746	Ostrya virginiana	ironwood	8.3		excellent		
1747	Ostrya virginiana	ironwood	9.9		excellent		
1748	Acer rubrum	red maple	13.9		good		
1749	Tilia americana	basswood	11.9		good		
1750	Tilia americana	basswood	8.5		good		
1751	Tilia americana	basswood	9.4		good		
1752	Prunus serotina	wild black cherry	17.3		excellent		
1753	Quercus rubra	red oak	20.2		excellent	Y	
1754	Prunus serotina	wild black cherry	10.3		good		
1755	Tilia americana	basswood	14.8		excellent		
1756	Tilia americana	basswood	13.1		excellent		
1757	Tilia americana	basswood	10.5		excellent		
1758	Sassafras albidum	sassafras	19.3		good		
1759	Tilia americana	basswood	16.7		excellent		
1760	Tilia americana	basswood	19.2		good	Y	

Tag No	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
1761	Tilia americana	basswood	10.8	(1001)	excellent	Lununun	oovereight
1762		red oak	10.0		excellent	v	
1763	Tilia americana	hasswood	10.5		good	1	
1764	Quercus rubra	red oak	23.4		excellent	Y	
1765	Tilia americana	hasswood	9.8		good		
1766	Tilia americana	basswood	29.5		good	Y	
1767	Ouercus rubra	red oak	13.4		good		
1768	Tilia americana	basswood	9.8		good		
1769	Tilia americana	basswood	12.2		good		
1770	Quercus rubra	red oak	12.2		good		
1771	Prunus serotina	wild black cherry	15.3		poor		
1772	Quercus rubra	red oak	14.3		excellent		
1773	Prunus serotina	wild black cherry	8.1		excellent		
1774	Prunus serotina	wild black cherry	16.1		excellent		
1775	Tilia americana	basswood	8.5		good		
1776	Tilia americana	basswood	8.8		good		
1777	Quercus rubra	red oak	25.2		good	Y	
1778	Quercus rubra	red oak	9.1		excellent		
1779	Quercus rubra	red oak	18.8		good	Y	
1780	Tilia americana	basswood	15.1		good		
1781	Tilia americana	basswood	9.4		good		
1782	Tilia americana	basswood	21.5		excellent	Y	
1783	Carya ovata	shagbark hickory	16.5		excellent	Y	
1784	Tilia americana	basswood	11.0		good		
1785	Carya glabra	pignut hickory	12.8		excellent		
1786	Quercus rubra	red oak	22.2		good	Y	
1787	Tilia americana	basswood	17.6		good		
1788	Tilia americana	basswood	19.6		excellent	Y	
1789	Ulmus americana	American elm	20.3		poor	Y	
1790	Tilia americana	basswood	12.7		excellent		
1791	Quercus rubra	red oak	9.6		good		
1792	Tilia americana	basswood	10.7		good		
1793	Tilia americana	basswood	11.4		good		
1794	Prunus serotina	wild black cherry	8.3		good		
1795	Tilia americana	basswood	15.0		good		
1796	Tilia americana	basswood	16.6		excellent		
1/9/	l Ilia americana	basswood	8.0		good		
1798	Tilia americana	basswood	17.4		excellent	X	
1799	Tilia americana	basswood	21.8		excellent	Y	
1800	Ulmus americana	American eim	10.0		good		
1801		basswood	9.0		excellent		
1802	Asser pogundo	basswood	11.1		good		
1803	Tilia amoricana	boxeider	11.7		pour		
1804	Tilia americana	basswood	9.8		fair		
1805	Tilia americana	basswood	11.7		Idii	v	
1800	Tilia americana	basswood	10.1		excellent	ř	
1007		red manle	15.4		excellent	v	
1800	Tilia amoricana	basswood	33.3		poor	ł V	
1810	Tilia americana	hasswood	23.0 18 5		fair	T V	
1811	Tilia americana	hasswood	11 /		fair	1	
1812	Tilia americana	basswood	14 2		good		
1813	Acer rubrum	red manle	14.Z Q /		excellent		
1814	Tilia americana	basswood	13 5		good		
1815	Tilia americana	basswood	11 0		good		
1816	Tilia americana	basswood	11.0		excellent		
1817	Tilia americana	basswood	Q Q		good		
1818	Tilia americana	basswood	8.7		excellent		
			0.7		chechen		Į

Tag No.	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
1819	Tilia americana	hasswood	81	()	good		
1820	Tilia americana	basswood	8.3		good		
1821	Ulmus americana	American elm	21.2		good	Y	
1822	Quercus rubra	red oak	9.6		excellent	-	
1823	Quercus rubra	red oak	22.4		good	Y	
1824	Tilia americana	basswood	10.4		good		
1825	Tilia americana	basswood	12.1		good		
1826	Quercus rubra	red oak	15.5		good		
1827	Quercus rubra	red oak	16.2		excellent	Y	
1828	Quercus rubra	red oak	15.6		good		
1829	Quercus rubra	red oak	17.7		excellent	Y	
1830	Tilia americana	basswood	9.1		excellent		
1831	Tilia americana	basswood	8.0		excellent		
1832	Acer rubrum	red maple	10.5		fair		
1833	Acer rubrum	red maple	11.0		good		
1834	Ulmus americana	American elm	8.0		good		
1835	Prunus serotina	wild black cherry	8.8		good		
1836	Quercus coccinea	scarlet oak	13.0		good		
1837	Quercus rubra	red oak	18.7		good	Y	
1838	Carya ovata	shagbark hickory	10.9		excellent		
1839	Quercus rubra	red oak	10.2		excellent		
1840	Quercus rubra	red oak	24.0		good	Y	
1841	Quercus rubra	red oak	12.8		good		
1842	Acer rubrum	red maple	10.2		good		
1843	Quercus rubra	red oak	10.2		good		
1844	Quercus rubra	red oak	15.0		good		
1845	Carya ovata	snagbark nickory	10.0		excellent		
1840	Carya corditormis	chagbark bickory	9.8		excellent		
1047	Carya Ovala	rod monto	12.7		goou		
1040	Tilia americana	basswood	0.9 8 5		pood		
1850		wild black cherry	0.J 12.1		good		
1850	Illmus americana	American elm	12.1		fair		
1852	Ouercus rubra	red oak	16.5		excellent	Y	
1853	Carva cordiformis	hitternut hickory	13.0		excellent	•	
1854	Quercus macrocarpa	burr oak	10.5		good		
1855	Quercus rubra	red oak	8.1		excellent		
1856	Carva cordiformis	bitternut hickory	12.0		excellent		
1857	, Quercus rubra	, red oak	22.5		excellent	Y	
1858	Ulmus americana	American elm	12.2		excellent		
1859	Quercus rubra	red oak	12.6		excellent		
1860	Quercus macrocarpa	burr oak	13.1		excellent		
1861	Ulmus americana	American elm	8.5		good		
1862	Carya ovata	shagbark hickory	11.0		good		
1863	Juglans nigra	black walnut	8.1		good		
1864	Juglans nigra	black walnut	12.0		good		
1865	Juglans nigra	black walnut	9.1		good		
1866	Juniperus virginiana	red cedar	2.4	12	good		
1867	Acer negundo	box elder	11.4		poor		
1868	Ulmus americana	American elm	13.8		good		
1869	Juniperus virginiana	red cedar	2.6	14	good		
1870	Juglans nigra	black walnut	13.4		good		
1871	Juglans nigra	black walnut	8.2		good		
1872	Juniperus virginiana	red cedar	3.1	14	good		
1873	Juglans nigra	black walnut	9.5		good		
1874	Juglans nigra	black walnut	9.1		good		
1875	Morus alba	white mulberry	9.6		fair		
1876	Ulmus rubra	slippery elm	10.7		good		

Tag No.	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
1877	Acer negundo	box elder	8.0	(1000)	noor		
1878	Acer negundo	box elder	13.4		poor		
1879	Prunus serotina	wild black cherry	11 1		good		
1880	Crataegus sp.	hawthorn	8.3		good		
1881	Acer negundo	box elder	9.1		poor		
1882	Prunus serotina	wild black cherry	10.9		excellent		
1883	Morus alba	white mulberry	14.6		fair		
1884	Juglans nigra	black walnut	8.7		good		
1885	Juglans nigra	black walnut	8.6		good		
1886	Acer negundo	box elder	11.0		fair		
1887	Prunus serotina	wild black cherry	8.7		excellent		
1888	Acer negundo	box elder	9.5		dead or dying		
1889	Fraxinus americana	white ash	10.8		good		
1890	Juglans nigra	black walnut	10.0		good		
1891	Juglans nigra	black walnut	14.0		good		
1892	Acer negundo	box elder	8.3		poor		
1893	Prunus serotina	wild black cherry	10.6		fair		
1894	Juglans nigra	black walnut	12.2		good		
1895	Juglans nigra	black walnut	8.9		good		
1896	Fraxinus americana	white ash	9.1		good		
1897	Juglans nigra	black walnut	15.9		good		
1898	Acer negundo	box elder	9.1		poor		
1899	Juglans nigra	black walnut	21.1		excellent	Y	
1900	Acer negundo	box elder	15.2		poor		
1901	Crataegus sp.	hawthorn	14.4		fair		
1902	Celtis occidentalis	hackberry	12.8		good		
1903	Juglans nigra	black walnut	34.2		good	Y	
1904	Juglans nigra	black walnut	13.5		excellent		
1905	Tilia americana	basswood	11.5		good		
1906	Acer negundo	box elder	11.5		fair		
1907	Acer negundo	box elder	8.5		dead or dying		
1908	Acer negundo	box elder	9.8		dead or dying		
1909	Carya cordiformis	bitternut hickory	9.4		excellent		
1910	Juglans nigra	black walnut	8.7		good		
1911	Acer negundo	box elder	15.4		poor		
1912	Acer negundo	box elder	13.3		poor		
1913	Juglans nigra	black walnut	18.9		excellent	Y	
1914	Jugians nigra	black walnut	16./		excellent		
1915	Carya cordiformis	Ditternut hickory	17.5		excellent	Y	
1916	Olmus americana	American eim	11.0		good		
1917	Acer negundo	box elder	9.3		poor		
1918	Carya corditormis	black walnut	15.2		excellent		
1919	Jugidiis iligid	black wainut	10.0		good		
1920		black walnut	0.0		goou		
1921		black walnut	9.9		excellent		
1922	Jugians nigra	black walnut	9.1		good		
1925		black walnut	15.2		goou		
1924	Jugians nigra	black walnut	9.2		fair	v	
1925		red cedar	31.9	12		Ť	
1920		red cedar	4.0	13	good		
1927		red cedar	1.0	12	good		
1920		red cedar	2.9	1/	evcellent		
1929	Dinus sylvestric	Scotch pipe	5.9 11 E	22	excellent		
1930	luglans nigra	black walnut	17.0	52	good		
1931	Jugians nigra	black walnut	17.9		good		
1032	Jugians nigra	black walnut	17.0		good		
1935	luglans nigra	black walnut	0.9 10.0		good		
1004	anglaria ingla	SIGCK WAILUU	10.9		guuu		1

			DBH	Height			
Tag No.	Scientific Name	Common Name	(inches)	(feet)	Condition	Landmark	Sovereign
1935	Juglans nigra	black walnut	8.1	. ,	good		
1936	Juglans nigra	black walnut	10.4		good		
1937	Juglans nigra	black walnut	19.1		good	Y	
1938	Juglans nigra	black walnut	26.8		fair	Y	
1939	Juglans nigra	black walnut	11.1		good		
1940	Juglans nigra	black walnut	12.6		fair		
1941	Juglans nigra	black walnut	21.3		fair	Y	
1942	Juglans nigra	black walnut	15.5		good		
1943	Morus alba	white mulberry	8.0		good		
1944	Juglans nigra	black walnut	12.7		fair		
1945	Juglans nigra	black walnut	8.1		fair		
1946	Acer negundo	box elder	9.3		dead or dying		
1947	Acer negundo	box elder	9.0		fair		
1948	Juglans nigra	black walnut	10.9		good		
1949	Acer negundo	box elder	13.6		fair		
1950	Salix nigra	black willow	8.6		good		
1951	Acer negundo	box elder	9.3		poor		
1952	Juglans nigra	black walnut	20.9		fair	Y	
1953	Acer negundo	box elder	10.0		poor		
1954	Juglans nigra	black walnut	9.1		excellent		
1955	Acer negundo	box elder	8.2		poor		
1956	Juglans nigra	black walnut	10.2		excellent		
1957	Salix nigra	black willow	17.1		fair		
1958	Salix nigra	black willow	15.6		good		
1959	Juglans nigra	black walnut	23.1		fair	Y	
1960	Populus deltoides	cottonwood	17.7		good		
1961	Juglans nigra	black walnut	8.1		good		
1962	Populus deltoides	cottonwood	42.1		good		
1963	Jugians nigra	black walnut	8.0		good		
1964	Jugians nigra	black walnut	9.0		excellent		
1965	Jugians nigra	black walnut	11.5		excellent		
1966	Jugians nigra	black walnut	9.1		good		
1907		box elder	0.5		poor		
1908	Acer negatido	black walnut	11 7		good		
1970	Juglans nigra	black walnut	8.8		excellent		
1971	Juglans nigra	black walnut	13.9		good		
1972	Juglans nigra	black walnut	16.6		excellent		
1973	luglans nigra	black walnut	11 7		excellent		
1974	Morus alba	white mulberry	8.0		fair		
1975	Juglans nigra	black walnut	10.3		excellent		
1976	Prunus serotina	wild black cherry	19.7		fair	Y	
1977	Prunus serotina	wild black cherry	8.4		excellent		
1978	Juglans nigra	black walnut	12.0		good		
1979	Juglans nigra	black walnut	9.5		good		
1980	Ulmus americana	American elm	10.7		excellent		
1981	Juglans nigra	black walnut	8.0		excellent		
1982	Juglans nigra	black walnut	8.5		good		
1983	Populus deltoides	cottonwood	32.8		excellent		
1984	Juglans nigra	black walnut	15.2		good		
1985	Salix amygdaloides	peach-leaved willo	8.5		good		
1986	Juglans nigra	black walnut	10.1		excellent		
1987	Juglans nigra	black walnut	15.2		excellent		
1988	Ulmus americana	American elm	11.2		excellent		
1989	Ulmus americana	American elm	9.4		good		
1990	Ulmus americana	American elm	8.4		good		
1991	Ulmus americana	American elm	9.0		excellent		
1992	Juglans nigra	black walnut	15.9		excellent		

Tag No.	Scientific Name	Common Name	DBH (inches)	Height (feet)	Condition	Landmark	Sovereign
1993	Juglans nigra	black walnut	17.8		excellent		
1994	Acer negundo	box elder	8.2		poor		
1995	Juglans nigra	black walnut	11.0		excellent		
1996	Juglans nigra	black walnut	8.7		excellent		
1997	Juglans nigra	black walnut	16.7		excellent		
1998	Juglans nigra	black walnut	15.6		good		
1999	Acer negundo	box elder	8.7		poor		
2000	Juglans nigra	black walnut	8.1		good		

 IBI GROUP

 25200 Telegraph Road – Suite 300

 Southfield MI 48033 USA

 Tel: 248 936 8000 fax: 248 936 8111

 ibigroup.com

Appendix F

Topographic Survey

I TAE	<u>BLE</u>
STC	P
NO	PARKING
NO	SMOKING
	I TAE STC NO NO