PRELIMINARY SITE PLAN FAIRWAY GLENS - PHASE II A SINGLE FAMILY DEVELOPMENT

DEVELOPMENT TEAM

APPLICANT MAYALCO LLC ATTN: MR. NABIL AKHRAS 6085 PONTIAC TRAIL WEST BLOOMFIELD, MI 48323 PHONE: 734.272.7998 EMAIL: AKHRASNABIL@GMAIL.COM

PLANNING / ENGINEERING CONSULTANT

ATWELL, LLC 311 NORTH MAIN STREET ANN ARBOR, MICHIGAN 48104 PHONE: 734.994.4000 ATTN: MATT BUSH, PE EMAIL: MBUSH@ATWELL-GROUP.COM

LEGAL DESCRIPTION

*LEGAL DESCRIPTION SUPPLIED BY OTHERS (ENTIRE PROPERTY - ±46 ACRES)

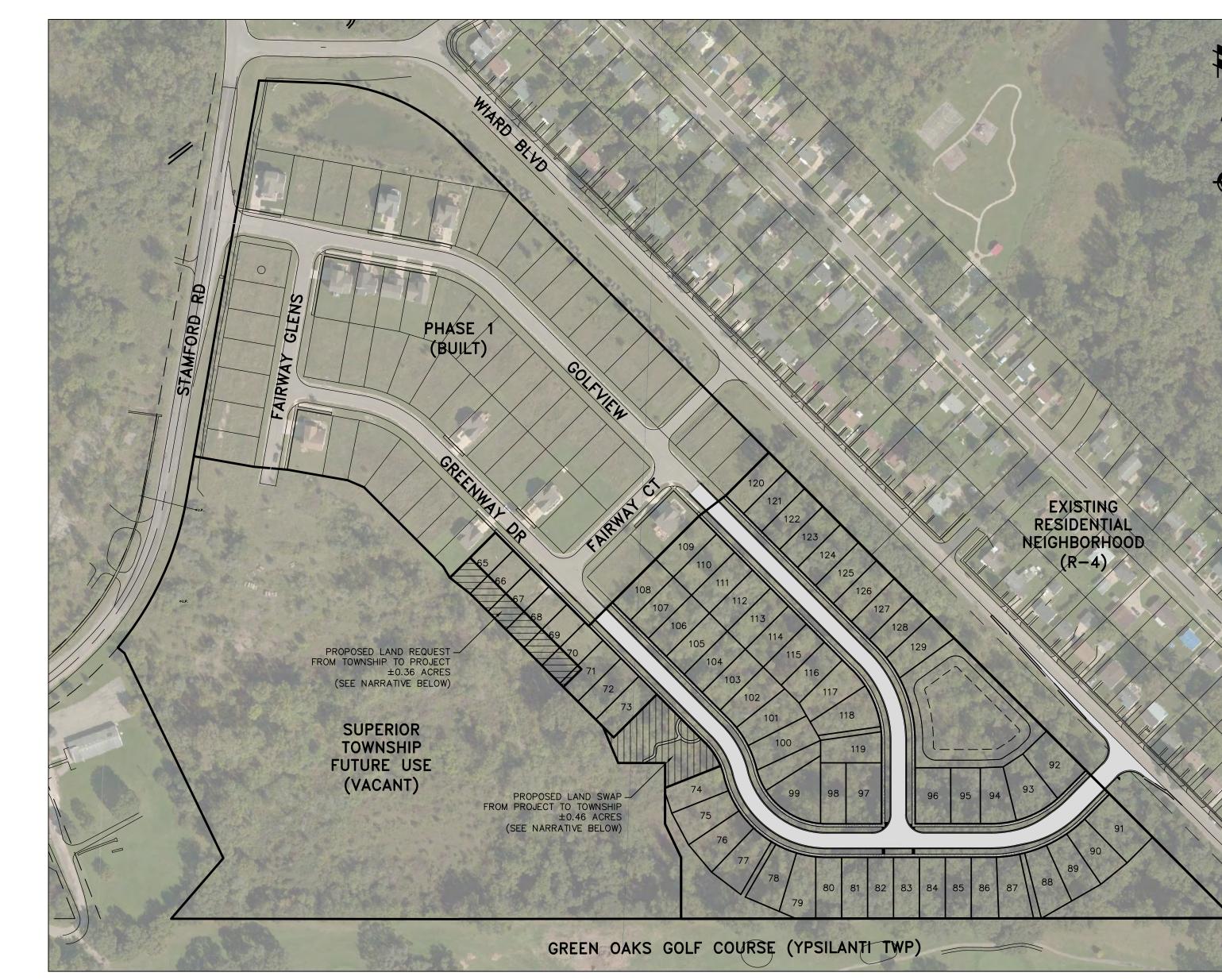
A PART OF THE SOUTH 1/2 OF SECTION 35, T. 2S., R. 7E., SUPERIOR TOWNSHIP, WASHTENAW COUNTY MICHIGAN; BEING MORE PARTICULARLY DESCRIBED AS: BEGINNING AT THE SOUTH 1/4 CORNER OF SAID SECTION 35; THENCE S. 87°47'02" W., ALONG THE SOUTH LINE OF SAID SECTION 35, 566.45 FEET; THENCE N. 38'28'02" E., 157.27 FEET; THENCE N. 28'02'28" W., 448.06 FEET THENCE N. 52'32'29" W., 17.00 FEET TO A POINT ON THE SOUTHERLY (43' HALF WIDTH) RIGHT-OF-WAY LINE OF STAMFORD ROAD (WIDTH VARIES); THENCE FOLLOWING SAID SOUTHERLY LINE OF STAMFORD ROAD 326.08 FEET ALONG A CURVE TO THE LEFT (RADIUS 623.00 FEET, CENTRAL ANGLE 29'59'19", LONG CHORD BEARS N. 22'33'12" E., 322.37 FEET); THENCE CONTINUING ALONG THE SOUTHEASTERLY LINE OF SAID STAMFORD ROAD, N. 07"32'29" E., 835.31 FEET TO A POINT ON THE SOUTHERLY LINE OF WIARD ROAD (WIDTH VARIES) AS DESCRIBED IN A QUIT CLAIM DEED RECORDED IN LIBER 1324, PAGE 24, WASHTENAW COUNTY RECORDS: THENCE N. 89'57'28" E., ALONG SAIL SOUTHERLY LINE OF WIARD ROAD, 128.79 FEET TO A POINT, SAID POINT BEING 9.27 FEET EASTERLY OF THE MOST WESTERLY CORNER OF "WASHTENAW AUTUMN NO. 2" SUBDIVISION AS RECORDED IN LIBER 14 OF PLATS, PAGES 27 AND 28, WASHTENAW COUNTY RECORDS; THENCE FOLLOWING THE NEXT THREE (3) COURSES ALONG THE SOUTHWESTERLY LINE OF WIARD ROAD, ALSO BEING THE SOUTHWESTERLY LINE OF SAID "WASHTENAW AUTUMN NO. 2" SUBDIVISION, AND "WASHTENAW AUTUMN NO. 1" SUBDIVISION AS RECORDED IN LIBER 14 OF PLATS, PAGE 26, WASHTENAW COUNTY RECORDS, (1) 297.25 FEET ALONG A CURVE TO THE RIGHT (RADIUS 397.25 FEET, CENTRAL ANGLE 42*52'20", LONG CHORD BEARS S. 68*38'40" E., 290.36 FEET); (2) S. 47*12'40" E., 1147.37 FEET TO A POINT, SAID POINT BEING THE SOUTHERN MOST CORNER OF SAID "WASHTENAW AUTUMN NO. 2 (3) S. 4712'40" E., 1008.64 FEET TO A POINT, SAID POINT BEING THE SOUTHWESTERN MOST CORNER OF SAID "WASHTENAW AUTUMN NO. 1 ON THE SOUTH LINE OF SAID SECTION 35: THENCE S. 87'38'40" W. ALONG SAID SOUTH LINE OF SECTION 35, 1523.66 FEET TO THE POINT OF BEGINNING. CONTAINS 45.993 ACRES AND BEING SUBJECT TO EASEMENTS AND RESTRICTIONS OF RECORD.

<u>OWNER</u>

MAYALCO LLC

10429 CANARY ISLE

PHONE: 734.272.7998


EMAIL: AKHRASNABIL@GMAIL.COM

TAMPA, FL 33647

PHASE 2 LEGAL DESCRIPTION (PER TAX RECORDS):

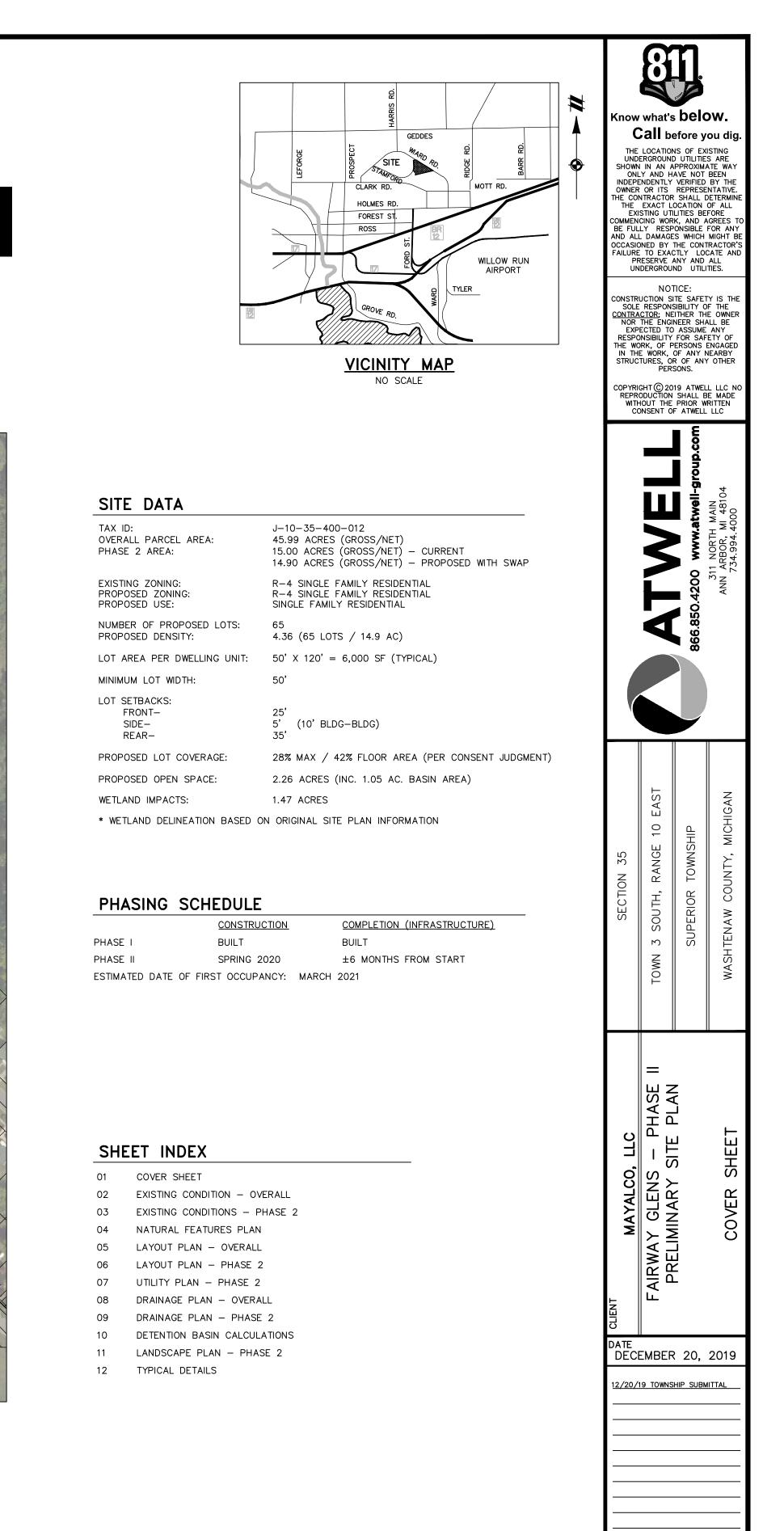
OWNER REQUEST SU 35-8C-2 L4762 P699 PHASE "II" COMMENCING AT S 1/4 COR SEC 35,TH N 02-03-29 W 692.11 FT, TH N 42-46-11 E 26.97 FT TO A POB, TH N 42-46-11 E 70.00 FT, TH S 47-13-49 E 260.12 FT, TH N 42-46-11 E 306.00 FT, TH N 50-19-35 E 66.58 FT, TH N 42-46-11 E 120.35 FT, TH S 47-12-40 E 285.72 FT, TH S 47-12-40 E 1008.28 FT, TH S 87-38-40 W 1086.57 FT, TH N 02-19-59 W 120.55 FT, TH N 27-42-40 W 73.05 FT, TH N 02-19-59 W 120.00 FT, TH S 87-40-01 W 92.35 FT, TH N 25-00-00 W 77.44 FT, TH N 47-13-49 W 110.25 FT, TH N 43-03-33 E 50.00 FT, TH N 47-13-49 W 310.12 FT TO THE POB. PT OF SE 1/4 SEC 35, T2S-R7E. 15.00 AC SPLIT ON 02/18/2010 FROM J -10-35-480-065 THROUGH J -10-35-480-196;

THE EXISTING PHASE 2 AREA CONSISTS OF APPROXIMATELY 15.0 ACRES. WITH THE PROPOSED SWAP OF LAND FOR LOTS 65-71, THE RESULTING PHASE 2 AREA WOULD BE 14.9 ACRES. UPON AGREEMENT OF THE LAND SWAP BY THE TOWNSHIP, A NEW LEGAL DESCRIPTION WILL BE CREATED FOR THE PHASE 2 AREA.

ZONING MAP

SUPERIOR TOWNSHIP, WASHTENAW COUNTY, MICHIGAN

OVERALL DEVELOPMENT MAP SCALE: 1" = 150 FEET


PROJECT NARRATIVE

FAIRWAY GLENS IS LOCATED AT THE SOUTHERN CORNER OF WIARD BOULEVARD AND STAMFORD ROAD IN SUPERIOR TOWNSHIP, ADJACENT TO THE NORTH PROPERTY LINE OF GREEN OAKS GOLF COURSE. THE ORIGINAL FAIRWAY GLENS DEVELOPMENT CONSISTED OF THREE PHASES WITH 196 LOTS AND WAS APPROVED AND PERMITTED THROUGH SUPERIOR TOWNSHIP IN 2002. THE OVERALL SITE IS APPROXIMATELY 46 ACRES AND IS ZONED R-4, SINGLE FAMILY RESIDENTIAL DISTRICT, URBAN.

DUE TO ECONOMIC FACTORS ONLY PHASE 1 WAS CONSTRUCTED AND THE REMAINDER OF THE PROPERTY HAS REMAINED UNDEVELOPED TO DATE. THE APPLICANT IS PROPOSING TO DEVELOP 65 LOTS IN THE PHASE 2 AREA (APPROXIMATELY 15 ACRES), AND THE REMAINDER OF THE PARCEL (ORIGINAL PHASE 3) WILL REMAIN UNDEVELOPED. THE PROPOSED LOT DIMENSIONS ARE 50' X 120' WITH A MINIMUM LOT SIZE OF 6,000 SF. THE HOMES WILL BE SIMILAR IN SIZE TO THOSE CONSTRUCTED IN PHASE 1.

THE CURRENT PHASE 2 PLAN GENERALLY FOLLOWS THE ORIGINAL APPROVED PLANS AND WILL HAVE PUBLIC ROADS WITH SIDEWALKS, AS PROPOSED IN THE ORIGINAL SITE PLAN PACKAGE. THE ORIGINAL ROADWAYS RECEIVED APPROVAL FROM THE COUNTY ROAD COMMISSION BASED ON THE PREVIOUSLY APPROVED PLANS FOR THE PROJECT. DUE TO THE ELIMINATION OF THE FUTURE PHASE 3 AREA, A MODIFICATION IS PROPOSED TO THE ROADWAY TO ELIMINATE THE PREVIOUS ROAD EXTENSIONS INTO THE OLD PHASE 3 AREA (CURRENT TOWNSHIP PARCEL). THIS CHANGE IN ROAD CONFIGURATION HAS PROMPTED A REVISION TO THE LAYOUT IN ORDER TO PROVIDE A MORE TRADITIONAL LOT LAYOUT, PARTICULARLY LOTS 65-71 WHICH ARE LOCATED IN THE AREA WHERE PREVIOUSLY TWO LOTS WERE PROPOSED PARALLEL TO GREENWAY DRIVE WITH THE INTENTION TO FRONT ON THE ORIGINAL PHASE 3 CUL-DE-SAC ROADWAY WHICH HAS BEEN REMOVED. IN ORDER TO FACILITATE THIS, THE DEVELOPER PROPOSES TO SWAP A PORTION OF THE ORIGINAL PHASE 2 LAND WITH THE LAND REQUIRED TO COMPLETE LOTS 65-71 TO FRONT ON GREENWAY DRIVE.

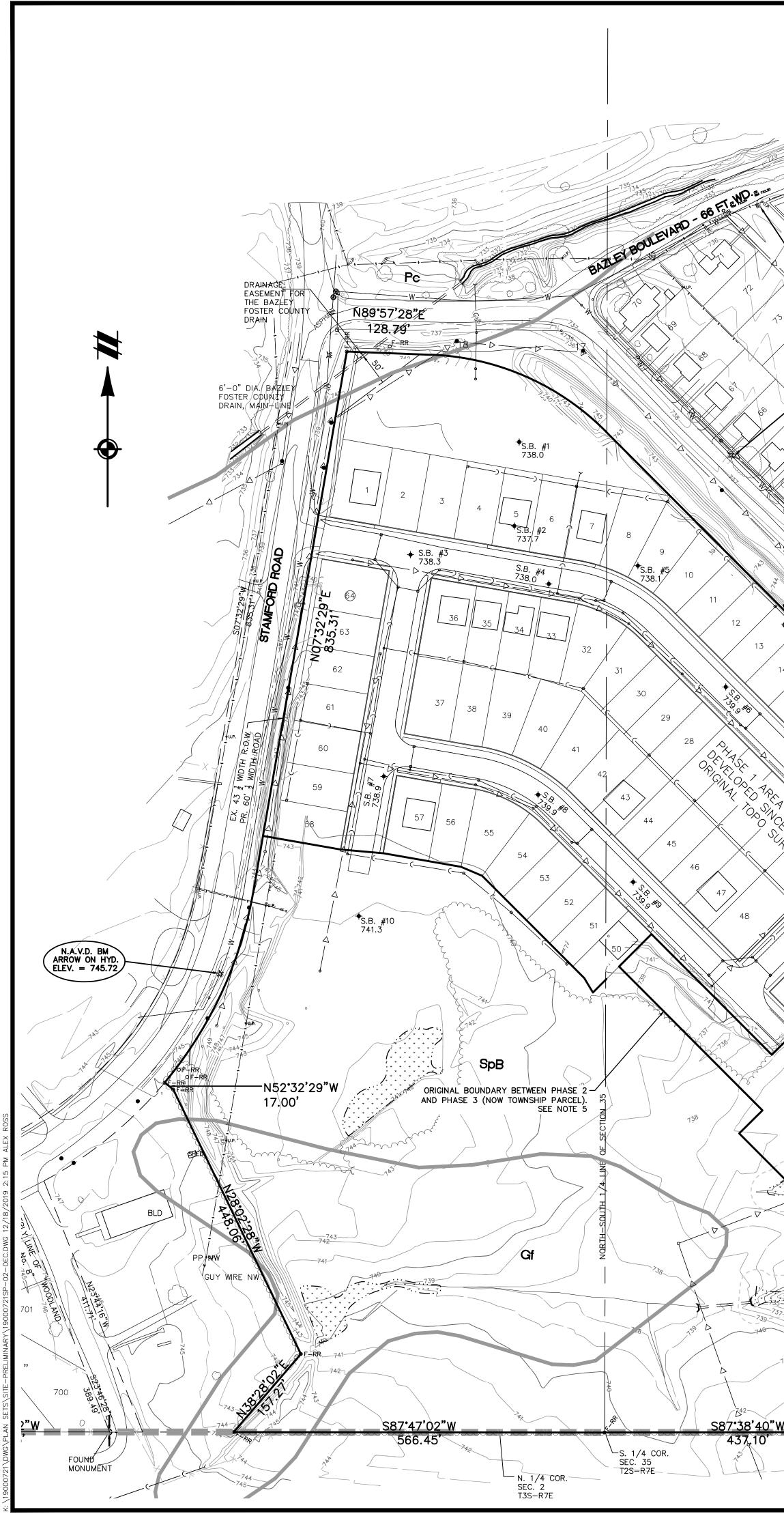
UTILITY SERVICE TO THE THE DEVELOPMENT WILL BE BY PUBLIC SANITARY SEWER WITH A CONNECTION TO THE EXISTING SEWER IN WIARD BOULEVARD. AND PUBLIC WATER SUPPLY WILL ALSO BE CONNECTED TO WIARD BOULEVARD AND LOOPED INTO THE EXISTING SUBDIVISION SYSTEM. STORMWATER MANAGEMENT WILL FOLLOW THE GENERAL INTENTION OF THE PREVIOUSLY APPROVED PLANS WITH A DETENTION BASIN PROPOSED TO DISCHARGE INTO THE BAZLEY-FOSTER DRAIN TO THE EAST.

DR. MB ||CH.WS/CK

REVISIONS

AS NOTED

01



SCALE

P.M. M BUSH

SHEET NO.

JOB 19000721

NOTES FROM ORIGINAL PHASE 1-3 CONSTRUCTION PLANS (2002):

- 1) TOPOGRAPHIC SURVEY WAS PROVIDED BY MILLETICS & ASSOCIATES. NOWAK AND FRAUS PROVIDED THE BOUNDARY SURVEY AND ALSO OBTAINED ADDITIONAL TOPOGRAPHIC INFORMATION, INCLUDING LOCATING AN EXISTING SANITARY SEWER TRAVERSING THROUGH THE SITE, WETLAND LOCATIONS AND OTHER MISCELLANEOUS DATA. NOWAK AND FRAUS ALSO REFINED THE LOCATIONS OF ALL TREES, TREE GROUPS, LIMITS OF WOOD-LINES AND WETLANDS, AND ESTABLISHED THE NAVD 88 BENCHMARK SHOWN ON THE SURVEY DRAWING.
- 2) WETLANDS SHOWN HAVE BEEN INDICATED BY FLAGGING PLACED BY KING AND MACGREGOR ENVIRONMENTAL, INC. ATWELL HAS NO KNOWLEDGE OF ANY ADDITIONAL FLAGGING OTHER THAN THAT SHOWN, NOR HAS THE PETITIONER AUTHORIZED ATWELL TO OBTAIN FIELD DATA INDICATING OTHERWISE. THE PETITIONER FILED A PROPER MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY PERMIT APPLICATION ON JUNE 12, 2000.

BENCH MARK LIST

REFERENCE BENCH MARK #1 RIM OF STORM CATCH BASIN, LOCATED ON THE EAST SIDE OF HARVEST LANE AT BAZLEY BOULEVARD. ELEVATION = 733.30

SITE BENCH MARK #1 ARROW ON HYDRANT, LOCATED ON THE NORTHERLY SIDE OF WIARD ROAD IN FRONT OF HOUSE # 1650 ELEVATION = 740.45

SITE BENCH MARK #2 ARROW ON HYDRANT, LOCATED ON THE NORTHERLY SIDE OF WIARD

ROAD IN FRONT OF HOUSE # 1614 ELEVATION = 737.70

SITE BENCH MARK #3 ARROW ON HYDRANT, LOCATED ON THE NORTHEWESTERLY CORNER OF RUSSET ROAD WIARD ROAD

1988 NORTH AMERICAN VERTICAL DATUM (NAVD-88): NAVD BENCHMARK IS LOCATED NEAR THE SOUTHWEST CORNER OF THE SITE IN THE STAMFORD ROAD R.O.W .: ARROW ON HYDRANT, NAVD-88 ELEVATION 745.72

NAVD SITE CORRECTION FACTOR: SUBTRACT 0.29 FEET FROM SHOW EXISTING ELEVATIONS TO EQUAL NAVD-88 DATUM

 \searrow

GU 3

. 8×12.02

REFERENCE BM ELEV. = 733,30

BW 140.45

MAR

1. ALAD

ko

(s)

'S

HAMILIST LANK

ବ୍ତ

^

h

BH 131.70 1

YPSILANTI TOWNSHIP

S87'38'40"W

1086.56

SpB

S 87'38' 40" W (M.) 2657.77' (M.) S 87'38' 06" W (R..) 2657.84' (R.)

GENERAL NOTES:

- 1) ADDITIONAL FIELD WORK MAY BE NECESSARY TO MORE ACCURATELY DEFINE THE FOLLOWING SITE FEATURES, WHICH HAVE POTENTIALLY CHANGED SINCE THE ORIGINAL SURVEY INFORMATION NOTED ABOVE:
- SURVEY PHASE 1 LIMITS ALONG THE PROPOSED PHASE 2 INTERFACE (AS-BUILT TOPO OF PHASE 1 GRADING, ROADS, ETC) WETLAND / ECOLOGICAL FEATURES DELINEATION
- WOODLAND / TREES / VEGETATION
- WIARD ROAD FRONTAGE (AS-BUILT ROAD GRADES, UTILITIES, ETC) 2) EXISTING SOILS IN THE ENTIRE PHASE 2 AREA ARE CATEGORIZED AS: SpB (SPINKS LOAMY SAND, 0–6% SLOPES) – HSG 'A'
- 3) FLOODPLAIN SUMMARY:
- FEMA: ZONE A/AE PER F.I.R.M. PANEL 26161C0290E NONE EGLE: WATERCOURSE WITH DRAINAGE AREA > 2 SQ. MI. - NONE
- 4) ALL ABANDONED AND EXISTING UTILITIES TO BE ABANDONED MUST BE REMOVED WHERE LOCATED WITHIN PROPOSED R.O.W. OR BUILDING ENVELOPE. THE RESULTING TRENCH MUST BE SAND BACKFILLED TO 95% COMPACTION.
- 5) SEE SHEET 05 FOR PROPOSED REVISION / LAND SWAP ALONG PHASE 2 AND TOWNSHIP PARCEL BOUNDARY.

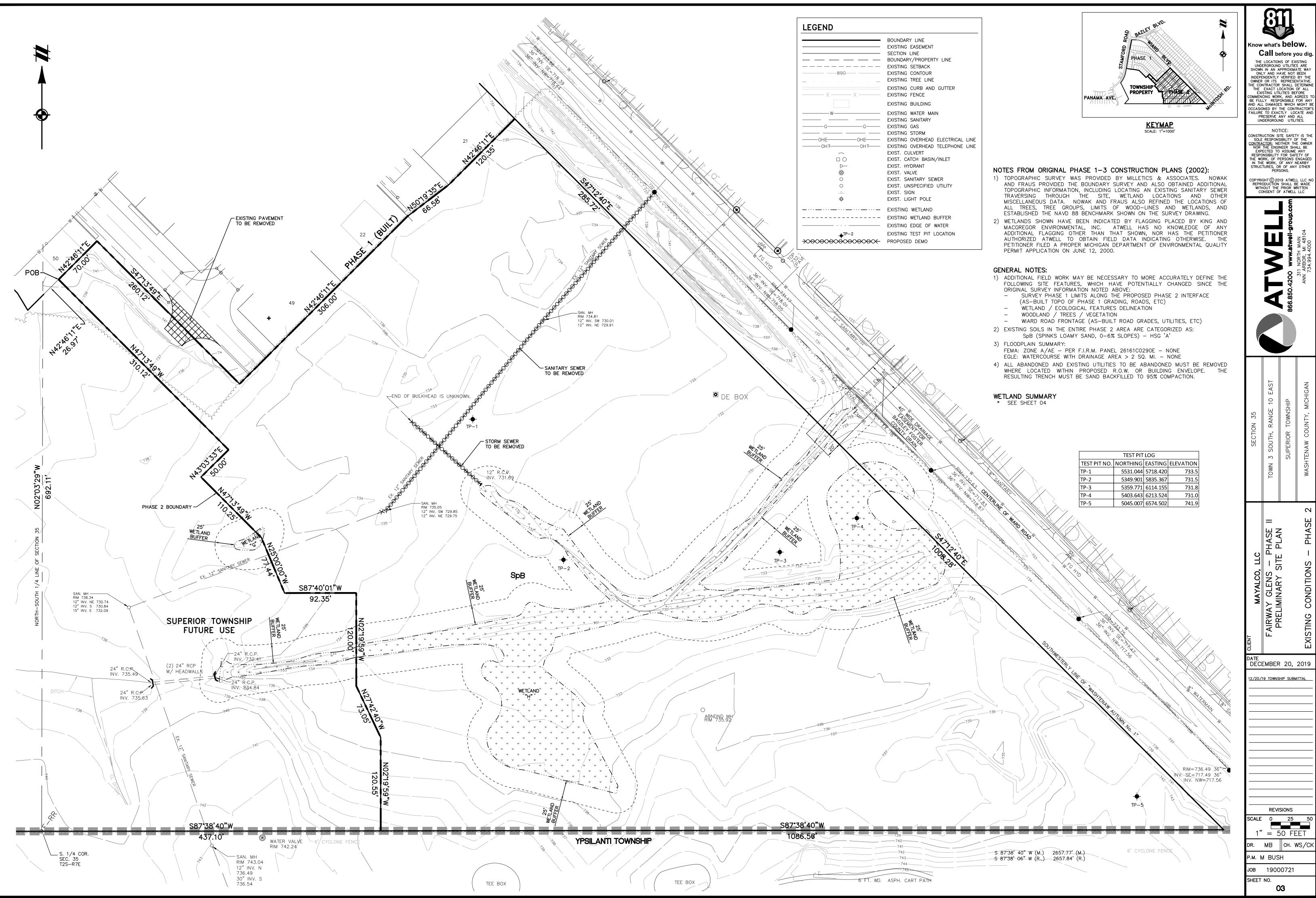
WETLAND SUMMARY * SEE SHEET 04

SOILS LEGEND

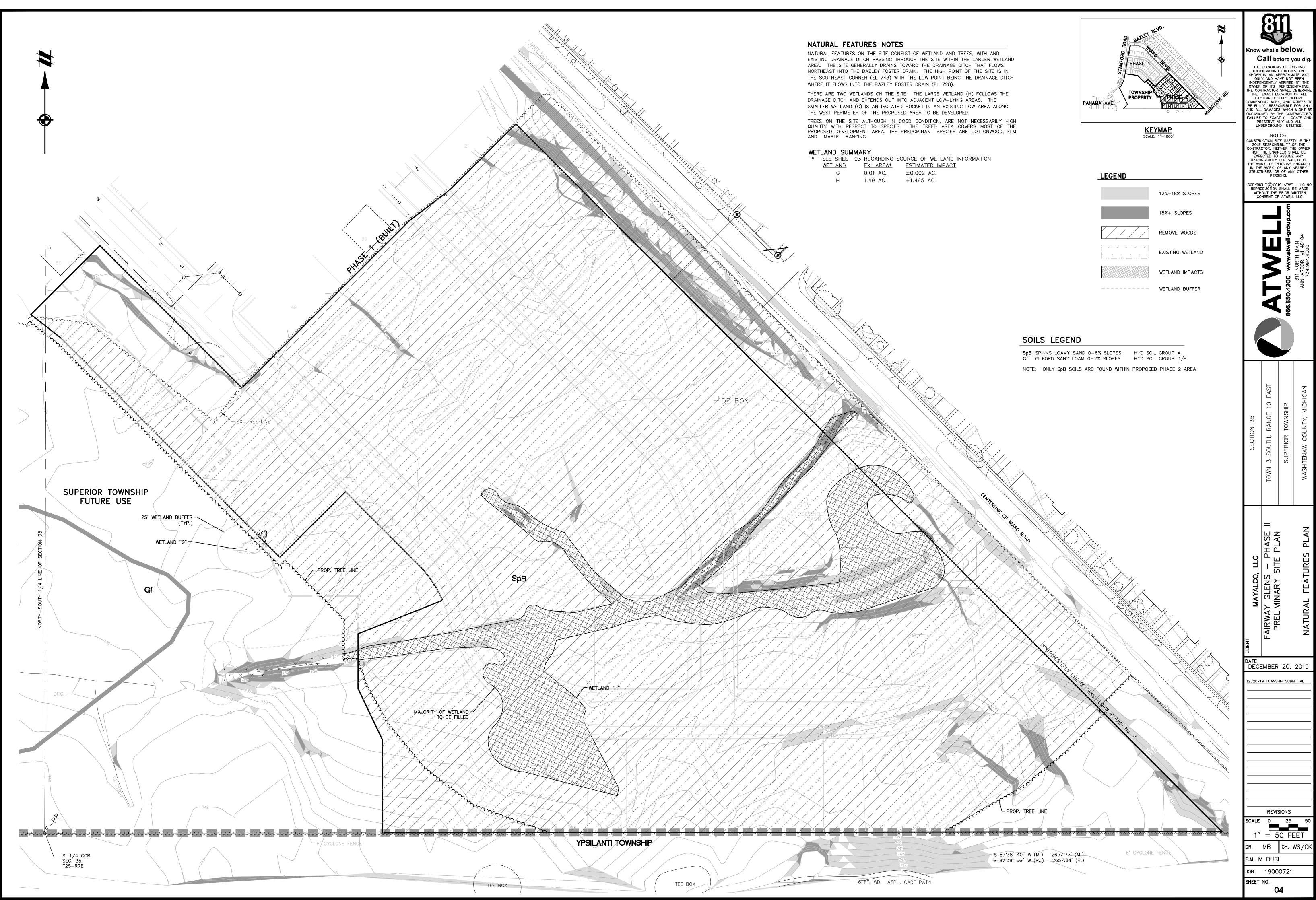
SpB SPINKS LOAMY SAND 0-6% SLOPES HYD SOIL GROUP A GF GILFORD SANY LOAM 0-2% SLOPES HYD SOIL GROUP D/B NOTE: ONLY SpB SOILS ARE FOUND WITHIN PROPOSED PHASE 2 AREA

 \mathcal{Q}

SOUTH LINE OF SECTION 35

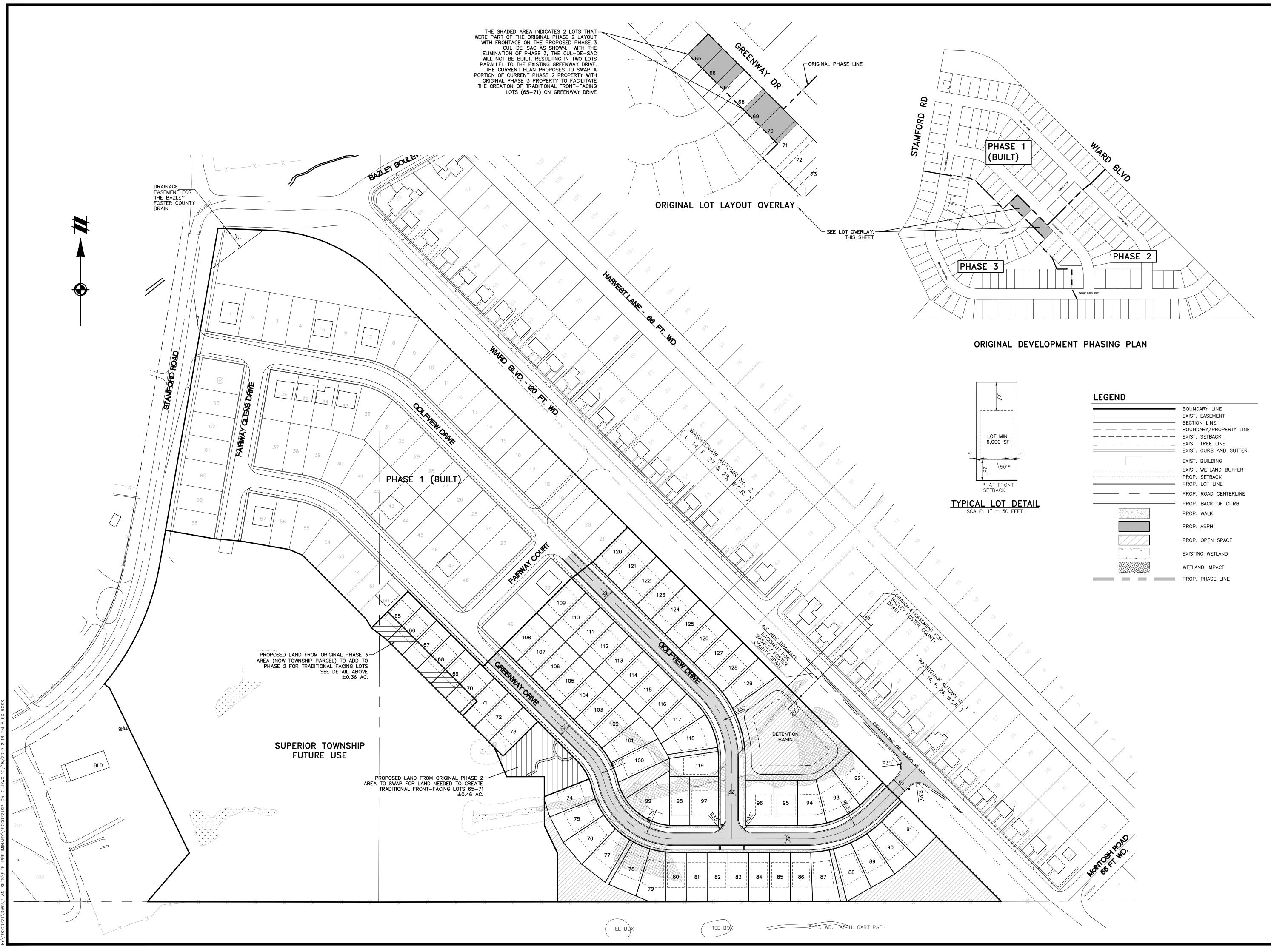

WON 66 FT. WD.

LEGEND	
	BOUNDARY LINE EXISTING EASEMENT SECTION LINE BOUNDARY/PROPERTY LINE EXISTING SETBACK EXISTING CONTOUR EXISTING TREE LINE
XX	EXISTING CURB AND GUTTER EXISTING FENCE
	EXISTING BUILDING
▷ ▷ G G (C C OHE OHE	EXISTING GAS
	EXISTING WETLAND EXISTING WETLAND BUFFER EXISTING EDGE OF WATER
 ∳ ^{TP−2}	EXISTING EDGE OF WATER EXISTING TEST PIT LOCATION


Know what's **below.** Call before you dig THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTOR'S OCCASIONED BY THE CONTRACTOR' FAILURE TO EXACTLY LOCATE AN PRESERVE ANY AND ALL UNDERGROUND UTILITIES. NOTICE: NO TICE: CONSTRUCTION SITE SAFETY IS THE SOLE RESPONSIBILITY OF THE <u>CONTRACTOR</u>; NEITHER THE OWNER NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK, OF PERSONS ENGAGED IN THE WORK, OF ANY NEARBY STRUCTURES, OR OF ANY OTHER PERSONS. COPYRIGHT © 2019 ATWELL LLC NO REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC <10 М = MAYALCO, LLC VY GLENS - PHASE TION CONDI AIRWAY GLEN EXISTING 0V DATE DECEMBER 20, 2019 12/20/19 TOWNSHIP SUBMITTAL REVISIONS 0 50 100 = 100 FEET SCALE DR. MB ||CH.WS/CI P.M. M BUSH JOB 19000721 SHEET NO.

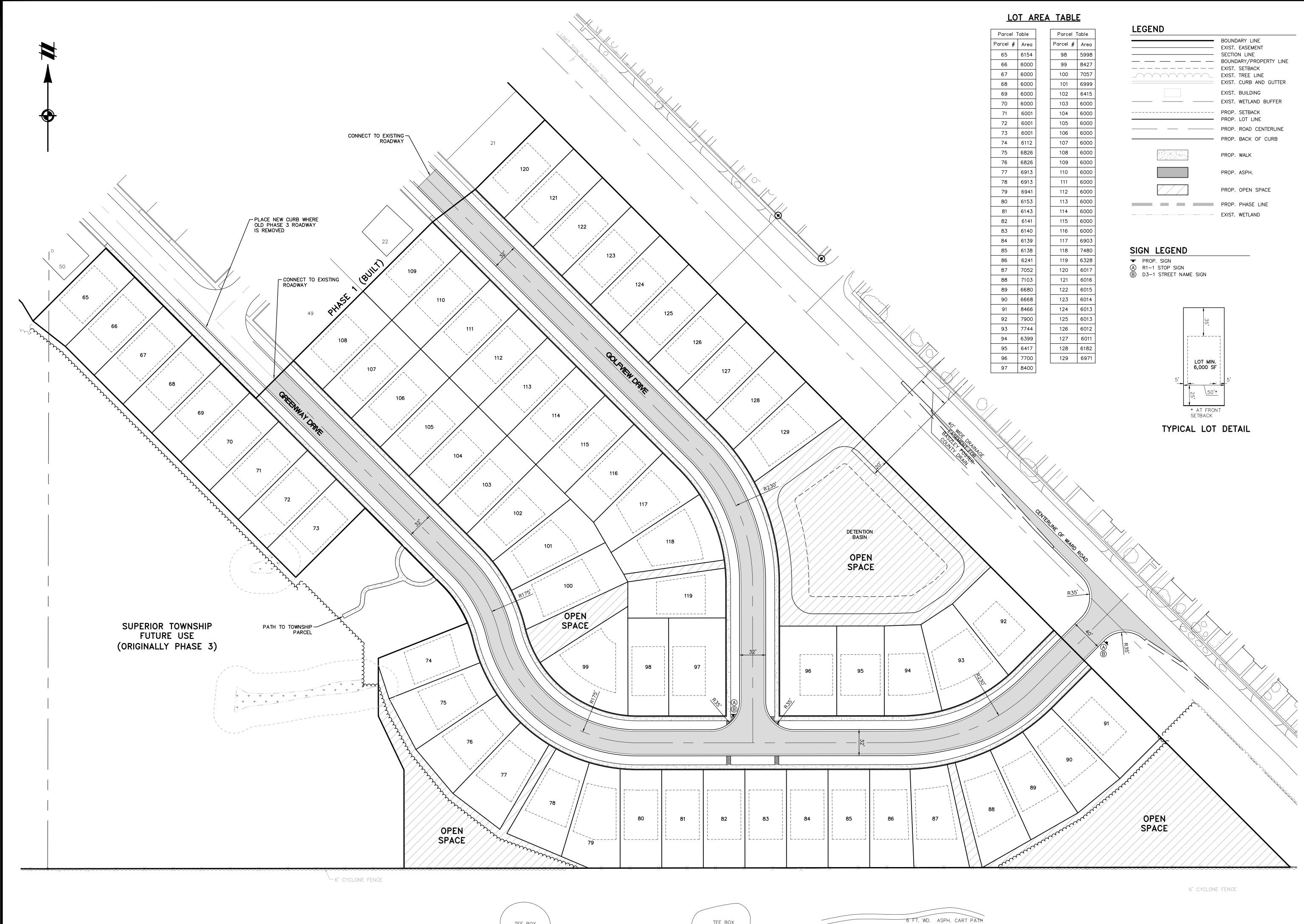
8

02



TEST PIT LOG										
TEST PIT NO.	NORTHING	EASTING	ELEVATION							
TP-1	5531.044	5718.420	733.5							
TP-2	5349.901	5835.367	731.5							
TP-3	5359.771	6114.155	731.8							
TP-4	5403.643	6213.524	731.0							
TP-5	5045.007	6574.502	741.9							

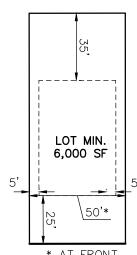
3721\DWG\PLAN SETS\SITE-PRELIMINARY\19000721SP-04-NF.DWG 12/18/2019 2:45 PM ALEX ROSS

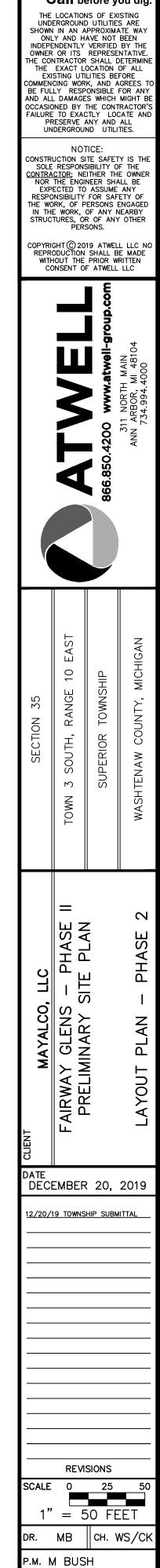

CAD FILE: 19000

	B
	E>
	SE
 ·	BO
 	E>
 · · · · · · · <u>-</u>	Ε>
	ΕX
	ΕX
 	E۷
 	Pf
	Pf
	Pf
	Pf
	PI
and the second	
	Pf
	Pf
	E۷

BOUNDARY LINE EXIST. EASEMENT SECTION LINE BOUNDARY/PROPERTY LINE EXIST. SETBACK EXIST. TREE LINE EXIST. CURB AND GUTTER
EXIST. BUILDING
EXIST. WETLAND BUFFER PROP. SETBACK PROP. LOT LINE
PROP. ROAD CENTERLINE
PROP. BACK OF CURB
PROP. WALK
PROP. ASPH.
PROP. OPEN SPACE
EXISTING WETLAND
WETLAND IMPACT
PROP. PHASE LINE

81 Know what's **below.** Call before you dig THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES. NOTICE: NO IICE: CONSTRUCTION SITE SAFETY IS THE SOLE RESPONSIBILITY OF THE <u>CONTRACTOR</u>; NEITHER THE OWNER NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK, OF PERSONS ENGAGED IN THE WORK, OF ANY NEARBY STRUCTURES, OR OF ANY OTHER PERSONS. COPYRIGHT © 2019 ATWELL LLC NO REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC Щ 2 EAS⁻ 10 Ċ M Z $\parallel =$ MAYALCO, LLC AY GLENS – PHASE JMINARY SITE PLAN O AIRWA DATE DECEMBER 20, 2019 12/20/19 TOWNSHIP SUBMITTAL REVISIONS 0 50 100 SCALE 1" = 100 FEET DR. MB CH. WS/CH P.M. M BUSH JOB 19000721 SHEET NO. 05

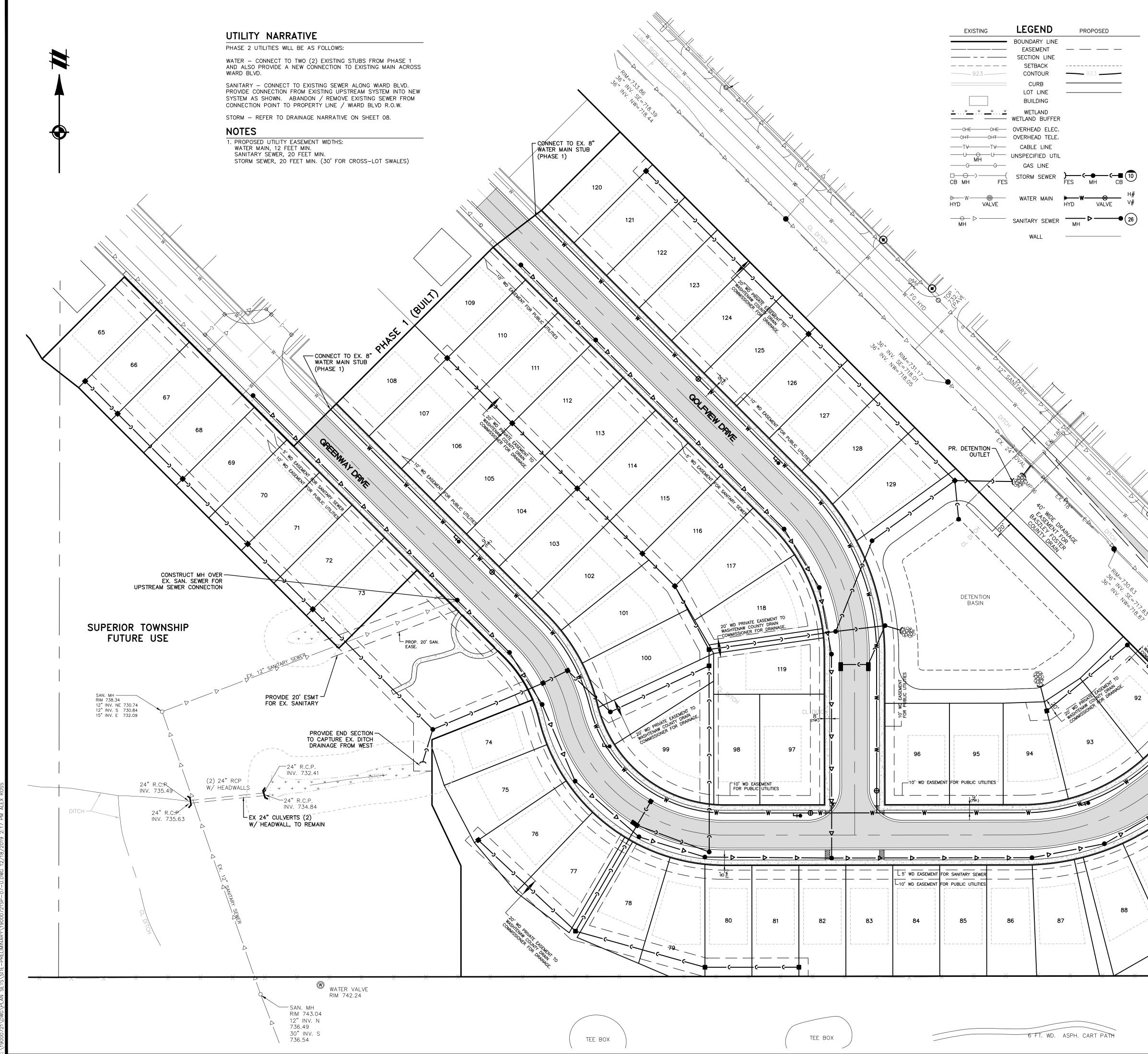

TEE BOX


TEE BOX

el 1	「able	Par
#	Area	Parce
	6154	98
	6000	99
	6000	10
	6000	10
	6000	10
	6000	10
	6001	10
	6001	10
	6001	10
	6112	10
	6826	10
	6826	10
	6913	11
	6913	11
	6941	11:
	6153	11.
	6143	11
	6141	11
	6140	11
	6139	11
	6138	11
	6241	11
	7052	12
	7103	12
	6680	12
	6668	12
	8466	12
	7900	12
	7744	12
	6399	12
	6417	12
	7700	12
	8400	

IABL	
Parcel ⁻	Table
Parcel #	Area
98	5998
99	8427
100	7057
101	6999
102	6415
103	6000
104	6000
105	6000
106	6000
107	6000
108	6000
109	6000
110	6000
111	6000
112	6000
113	6000
114	6000
115	6000
116	6000
117	6903
118	7480
119	6328
120	6017
121	6016
122	6015
123	6014
124	6013
125	6013
126	6012
127	6011
128	6182
129	6971

81


Know what's **below.**

Call before you dig.

JOB 19000721

06

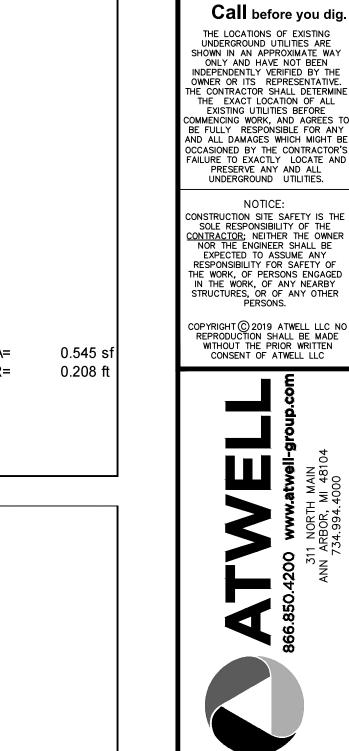
SHEET NO.

	<u>SANI</u>	TARY SEWER BA	SIS OF DESIGN		
Total No. of Singl	e Family Lo	ots:	65 Lots		
No. of Users per	Lot:		3.5 Persons		
Total Expected P	opulation S	erved:	228 Persons		
Average Daily Flo	ow (per cap	ita):	100 G.P.D.		
Peaking Factor:		(POP/1000) = (POP/1000)	4.13		
Average Flow:		POP * 100 =	22,800 G.P.D.		
		=	15.8 G.P.M. 0.035 C.F.S.		
Peak Flow:	22,80	0 * 4.13 =	94,090 G.P.D.		
		=	65.3 G.P.M.		
		=	0.146 C.F.S.		
Pipe Capacity:	10	in. diameter		A=	0.54
	0.40%	•		R=	0.20
	0.013	Manning's 'n'			
	Manni	ng's Capacity =	1.389 C.F.S.		
	Velocit	y Flowing Full =	2.55 F.P.S.		

WATER MAIN BASIS OF DESIGN

No. of Single Family	Lots:		65 Lots	
No. of Users per Lot	:		3.5 Persons	
Total Expected Popu	ulation Serve	d:	228 Persons	
Average Daily Flow (per capita):		100 G.P.D.	
Peaking Factor:		OP/1000) = OP/1000)	4.13	
Average Demand:	Ρ	OP * 100 = = =	22,800 G.P.D. 15.8 G.P.M. 0.035 C.F.S.	
Peak Demand:	22,800	* 4.13 = = =	94,090 G.P.D. 65.3 G.P.M. 0.146 C.F.S.	

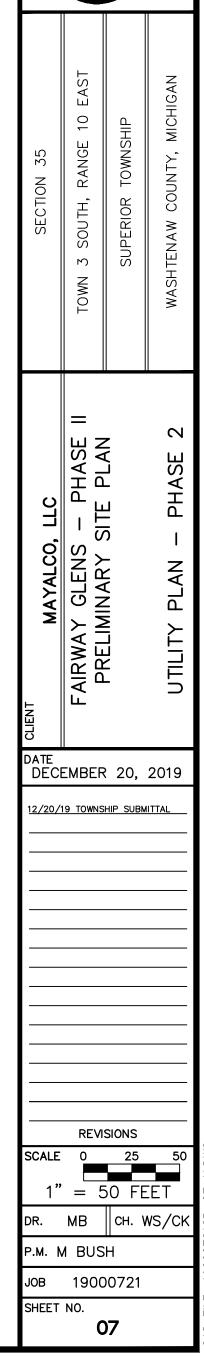
(On)

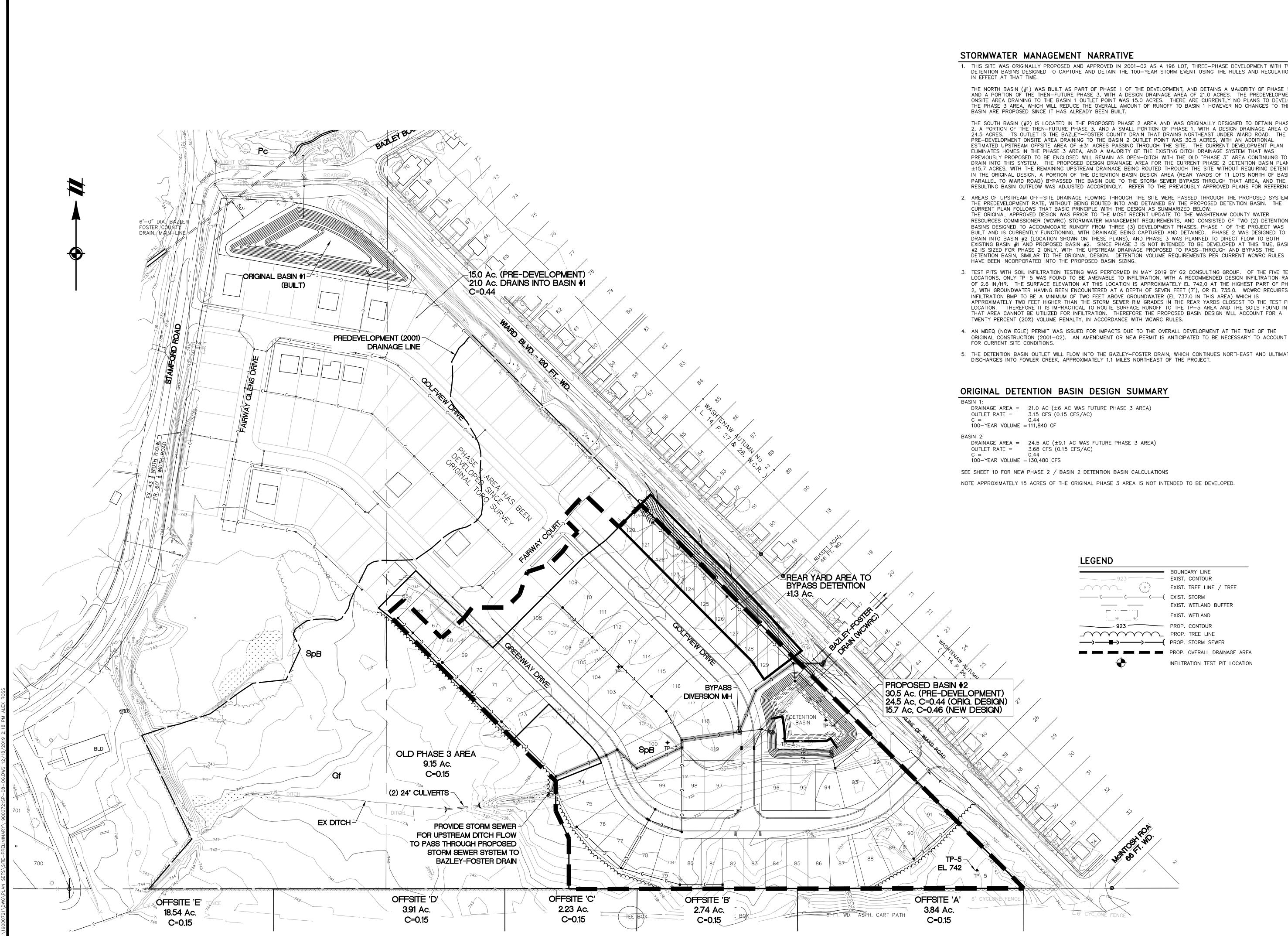

90

CONNECT TO EX. 8" WATER MAIN W

*10 ;) *10 ;)

RIM=736.49 36" INV. SE=717.49 36" INV. NW=717.56


279



8

Know what's **below.**

NOTICE:

STORMWATER MANAGEMENT NARRATIVE

1. THIS SITE WAS ORIGINALLY PROPOSED AND APPROVED IN 2001-02 AS A 196 LOT, THREE-PHASE DEVELOPMENT WITH TWO DETENTION BASINS DESIGNED TO CAPTURE AND DETAIN THE 100-YEAR STORM EVENT USING THE RULES AND REGULATIONS

THE NORTH BASIN (#1) WAS BUILT AS PART OF PHASE 1 OF THE DEVELOPMENT, AND DETAINS A MAJORITY OF PHASE 1 AND A PORTION OF THE THEN-FUTURE PHASE 3, WITH A DESIGN DRAINAGE AREA OF 21.0 ACRES. THE PREDEVELOPMENT ONSITE AREA DRAINING TO THE BASIN 1 OUTLET POINT WAS 15.0 ACRES. THERE ARE CURRENTLY NO PLANS TO DEVELOP THE PHASE 3 AREA, WHICH WILL REDUCE THE OVERALL AMOUNT OF RUNOFF TO BASIN 1 HOWEVER NO CHANGES TO THE BASIN ARE PROPOSED SINCE IT HAS ALREADY BEEN BUILT.

THE SOUTH BASIN (#2) IS LOCATED IN THE PROPOSED PHASE 2 AREA AND WAS ORIGINALLY DESIGNED TO DETAIN PHASE 2, A PORTION OF THE THEN-FUTURE PHASE 3, AND A SMALL PORTION OF PHASE 1, WITH A DESIGN DRAINAGE AREA OF 24.5 ACRES. ITS OUTLET IS THE BAZLEY-FOSTER COUNTY DRAIN THAT DRAINS NORTHEAST UNDER WIARD ROAD. THE PRE-DEVELOPMENT ONSITE AREA DRAINING TO THE BASIN 2 OUTLET POINT WAS 30.5 ACRES, WITH AN ADDITIONAL ESTIMATED UPSTREAM OFFSITE AREA OF ±31 ACRES PASSING THROUGH THE SITE. THE CURRENT DEVELOPMENT PLAN ELIMINATES HOMES IN THE PHASE 3 AREA, AND A MAJORITY OF THE EXISTING DITCH DRAINAGE SYSTEM THAT WAS PREVIOUSLY PROPOSED TO BE ENCLOSED WILL REMAIN AS OPEN-DITCH WITH THE OLD "PHASE 3" AREA CONTINUING TO DRAIN INTO THIS SYSTEM. THE PROPOSED DESIGN DRAINAGE AREA FOR THE CURRENT PHASE 2 DETENTION BASIN PLAN IS ±15.7 ACRES, WITH THE REMAINING UPSTREAM DRAINAGE BEING ROUTED THROUGH THE SITE WITHOUT REQUIRING DETENTION. IN THE ORIGINAL DESIGN, A PORTION OF THE DETENTION BASIN DESIGN AREA (REAR YARDS OF 11 LOTS NORTH OF BASIN 2 PARALLEL TO WIARD ROAD) BYPASSED THE BASIN DUE TO THE STORM SEWER BYPASS THROUGH THAT AREA, AND THE RESULTING BASIN OUTFLOW WAS ADJUSTED ACCORDINGLY. REFER TO THE PREVIOUSLY APPROVED PLANS FOR REFERENCE.

2. AREAS OF UPSTREAM OFF-SITE DRAINAGE FLOWING THROUGH THE SITE WERE PASSED THROUGH THE PROPOSED SYSTEM AT THE PREDEVELOPMENT RATE, WITHOUT BEING ROUTED INTO AND DETAINED BY THE PROPOSED DETENTION BASIN. THE CURRENT PLAN FOLLOWS THAT BASIC PRINCIPLE WITH THE DESIGN AS SUMMARIZED BELOW: THE ORIGINAL APPROVED DESIGN WAS PRIOR TO THE MOST RECENT UPDATE TO THE WASHTENAW COUNTY WATER RESOURCES COMMISSIONER (WCWRC) STORMWATER MANAGEMENT REQUIREMENTS, AND CONSISTED OF TWO (2) DETENTION BASINS DESIGNED TO ACCOMMODATE RUNOFF FROM THREE (3) DEVELOPMENT PHASES. PHASE 1 OF THE PROJECT WAS BUILT AND IS CURRENTLY FUNCTIONING, WITH DRAINAGE BEING CAPTURED AND DETAINED. PHASE 2 WAS DESIGNED TO DRAIN INTO BASIN #2 (LOCATION SHOWN ON THESE PLANS), AND PHASE 3 WAS PLANNED TO DIRECT FLOW TO BOTH EXISTING BASIN #1 AND PROPOSED BASIN #2. SINCE PHASE 3 IS NOT INTENDED TO BE DEVELOPED AT THIS TIME, BASIN #2 IS SIZED FOR PHASE 2 ONLY, WITH THE UPSTREAM DRAINAGE PROPOSED TO PASS-THROUGH AND BYPASS THE

HAVE BEEN INCORPORATED INTO THE PROPOSED BASIN SIZING. 3. TEST PITS WITH SOIL INFILTRATION TESTING WAS PERFORMED IN MAY 2019 BY G2 CONSULTING GROUP. OF THE FIVE TEST LOCATIONS, ONLY TP-5 WAS FOUND TO BE AMENABLE TO INFILTRATION, WITH A RECOMMENDED DESIGN INFILTRATION RATE OF 2.6 IN/HR. THE SURFACE ELEVATION AT THIS LOCATION IS APPROXIMATELY EL 742,0 AT THE HIGHEST PART OF PHASE 2, WITH GROUNDWATER HAVING BEEN ENCOUNTERED AT A DEPTH OF SEVEN FEET (7'), OR EL 735.0. WCWRC REQUIRES AN INFILTRATION BMP TO BE A MINIMUM OF TWO FEET ABOVE GROUNDWATER (EL 737.0 IN THIS AREA) WHICH IS APPROXIMATELY TWO FEET HIGHER THAN THE STORM SEWER RIM GRADES IN THE REAR YARDS CLÓSEST TO THE TEST PIT LOCATION. THEREFORE IT IS IMPRACTICAL TO ROUTE SURFACE RUNOFF TO THE TP-5 AREA AND THE SOILS FOUND IN

THAT AREA CANNOT BE UTILIZED FOR INFILTRATION. THEREFORE THE PROPOSED BASIN DESIGN WILL ACCOUNT FOR A TWENTY PERCENT (20%) VOLUME PENALTY, IN ACCORDANCE WITH WCWRC RULES. 4. AN MDEQ (NOW EGLE) PERMIT WAS ISSUED FOR IMPACTS DUE TO THE OVERALL DEVELOPMENT AT THE TIME OF THE

ORIGINAL CONSTRUCTION (2001-02). AN AMENDMENT OR NEW PERMIT IS ANTICIPATED TO BE NECESSARY TO ACCOUNT FOR CURRENT SITE CONDITIONS.

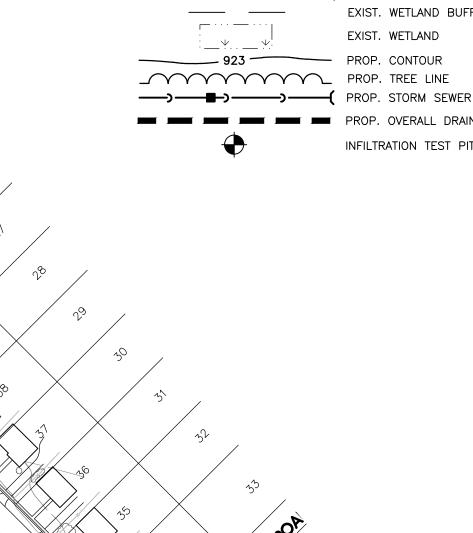
5. THE DETENTION BASIN OUTLET WILL FLOW INTO THE BAZLEY-FOSTER DRAIN, WHICH CONTINUES NORTHEAST AND ULTIMATELY DISCHARGES INTO FOWLER CREEK, APPROXIMATELY 1.1 MILES NORTHEAST OF THE PROJECT.

ORIGINAL DETENTION BASIN DESIGN SUMMARY

DRAINAGE AREA = $21.0 \text{ AC} (\pm 6 \text{ AC} \text{ WAS} \text{ FUTURE} \text{ PHASE} 3 \text{ AREA})$ OUTLET RATE = 3.15 CFS (0.15 CFS/AC) 0.44 100-YEAR VOLUME = 111,840 CF

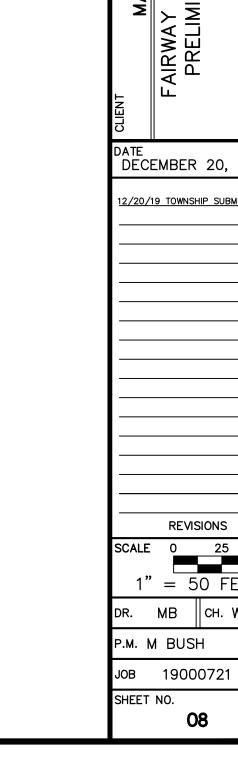
DRAINAGE AREA = $24.5 \text{ AC} (\pm 9.1 \text{ AC} \text{ WAS} \text{ FUTURE} \text{ PHASE} 3 \text{ AREA})$

0.44 100-YEAR VOLUME = 130,480 CFS

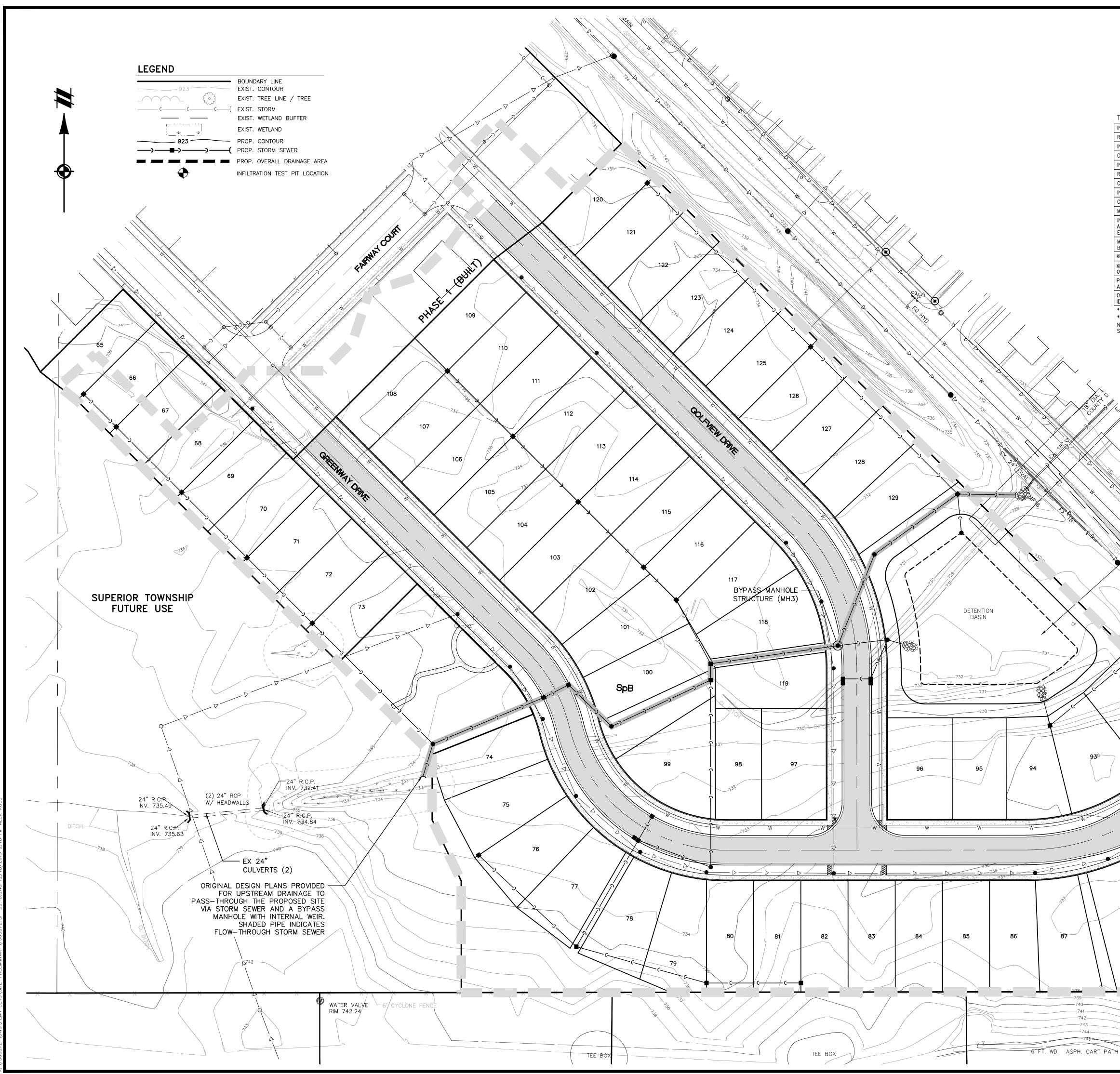

SEE SHEET 10 FOR NEW PHASE 2 / BASIN 2 DETENTION BASIN CALCULATIONS

NOTE APPROXIMATELY 15 ACRES OF THE ORIGINAL PHASE 3 AREA IS NOT INTENDED TO BE DEVELOPED.

LEGEND


_____ 923 -

{ o }



Well 60

BOUNDARY LINE EXIST. CONTOUR EXIST. TREE LINE / TREE EXIST. STORM EXIST. WETLAND BUFFER EXIST. WETLAND - PROP. CONTOUR PROP. OVERALL DRAINAGE AREA INFILTRATION TEST PIT LOCATION

8 Know what's **below**. Call before you dig THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINI THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES T BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BI OCCASIONED BY THE CONTRACTOR OCCASIONED BY THE CONTRACTOR' FAILURE TO EXACTLY LOCATE AN PRESERVE ANY AND ALI UNDERGROUND UTILITIES. NOTICE: CONSTRUCTION SITE SAFETY IS THE SOLE RESPONSIBILITY OF THE <u>CONTRACTOR</u>; NEITHER THE OWNER NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK OF DEPEONS THE WORK, OF PERSONS ENGAGE IN THE WORK, OF ANY NEARBY STRUCTURES, OR OF ANY OTHER PERSONS. COPYRIGHT © 2019 ATWELL LLC NO REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC 10 = HASE LLC ហ MAYALCO, DECEMBER 20, 2019 12/20/19 TOWNSHIP SUBMITTAL 0 25 5 = 50 FEET DR. MB ∥CH.WS∕C

			ш	Σ	6	R						
			RIP-RAP/SILT FENCE	SYSTEM	SUMPS	CATCH BASIN INLET COVER	ER	ßΑΥ		OVERFLOW		
TS		AREAS		ы N	รา	E	RISER	SEDIMENT FOREBAY	AREA	VERF		
	EAS	AR	SIL	STORM DRAINAGE	BASIN	NN		FO	N N			
NON	ARI	PERVIOUS	AP/	DRA	BA	BASII	PERFORATED	ENT	DETENTION	EMERGENCY		
	PAVED	RVIC		RM	CATCH	CH	RFO	DIMI	TEN	ERG		ESTIMATED
TASKS	ΡA	ΡE	R P	STC	CA.	CAT	ΡEI	SEI	Ы	EM	SCHEDULE	ANNUAL COS
INSPECT FOR SEDIMENT ACCUMULATION	Х		X	X	X	X		Х	X		SEMI-ANUALLY/AS NEEDED*	\$100
REMOVAL OF SEDIMENT ACCUMULATION	Х		X	X	X			Х	X		ANUALLY/AS NEEDED*	\$300
INSPECT FOR FLOATABLES AND DEBRIS				X	\times		Х	Х	X		ANNUALLY	\$50
CLEANING FOR FLOATABLES AND DEBRIS				X	\times		Х	Х	X		ANNUALLY	\$100
INSPECTION FOR EROSION		\times	X					Х	X	X	SEMI-ANNUALLY	\$50
REESTABLISH PERMANENT VEGETATION ON ERODED SLOPES		\times						Х	X	\times	AS NEEDED	\$200
CLEAN DRIVES AND PARKING LOTS	Х										ANNUALLY	\$300
INSPECT PRIVATE ROADS	Х										ANNUALLY	\$100
CRACK SEALING / PAVEMENT REPAIR	Х										AS NEEDED	\$200
MOWING		\times							X		AS NEEDED, 0–2 TIMES/YEAR	\$200
INSPECT STRUCTURAL ELEMENTS DURING WET WEATHER AND COMPARE TO AS-BUILT PLANS (BY A PROFESSIONAL ENGINEER REPORTING TO THE OWNER)			$ \times$	$ \times$			×	×	$ \times$	×	ANNUALLY/AS NEEDED**	\$100
MAKE ADJUSTMENTS OR REPLACEMENTS AS DETERMINED BY ANNUAL WET WEATHER INSPECTION			×	×			×	×	×	×	AS NEEDED**	\$100
KEEP RECORDS OF ALL INSPECTIONS AND MAINTENANCE ACTIVITIE	s af	ND R	REP0	rt t	O PF	ROPE	RTY	OWN	NER		ANNUALLY	\$50
KEEP RECORDS OF ALL COSTS FOR INSPECTIONS, MAINTENANCE . OWNER	AND	REP	AIRS	. R	EPOF	RT TO) PF	ROPE	RTY		ANNUALLY	\$50
PROPERTY OWNER REVIEWS COST EFFECTIVENESS OF THE PF AND MAKES NECESSARY ADJUSTMENTS	REVE	NTA	TIVE	MAI	NTEN	IANC	ΕP	ROG	RAM		ANNUALLY	\$50
OWNER TO HAVE A PROFESSIONAL ENGINEER CARRY OUT EN IDENTIFICATION OF SEVERE PROBLEMS	IERG	ENC	Y IN	SPE	CTIO	NS (JPOI	N			AS NEEDED	\$100
* "AS NEEDED" MEANS WHEN SEDIMENT HAS ACCUMULATED ** DETENTION BASIN AND FOREBAY SHALL BE INSPECTED / NOTE: NO CHEMICALS ARE ALLOWED IN STORMWATER FEATUF SPECIES MAY BE TREATED WITH CHEMICALS BY A CERTIFIED	and Res	REP OR	Paire Buf	ED A FER	S N	EEDE	ED F	OLL	OWIN	IG S	TORMS OF 1 INCH OR MORE.	
NOTES												

30.5 Ac. (EXISTING) 15.7 Ac. DRAINS INTO BASIN #2 24.5 Ac. (ORIG. DESIGN)

_

6' CYCLONE FENCE

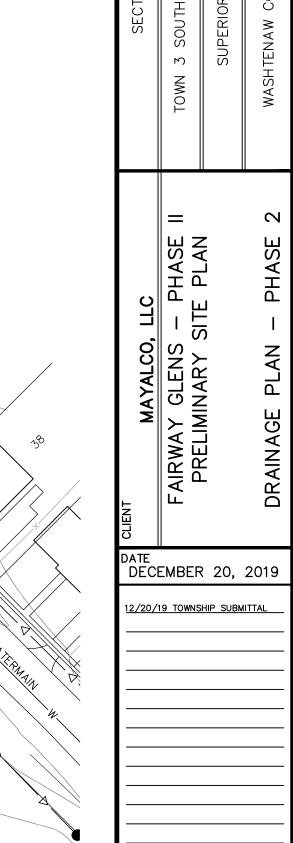
91

90

_

89

_


88

 \rightarrow

FIRE NA

92)

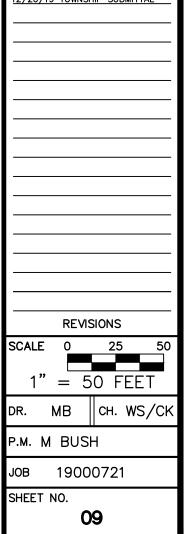
<u>`</u>?~` MITE

Know what's **below.** Call before you dig.

THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND ACREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.

NOTICE:

NO IICE: CONSTRUCTION SITE SAFETY IS THE SOLE RESPONSIBILITY OF THE <u>CONTRACTOR</u>; NEITHER THE OWNER NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK, OF PERSONS ENGAGED IN THE WORK, OF ANY NEARBY STRUCTURES, OR OF ANY OTHER PERSONS.


COPYRIGHT © 2019 ATWELL LLC NO REPRODUCTION SHALL BE MADE WITHOUT THE PRIOR WRITTEN CONSENT OF ATWELL LLC

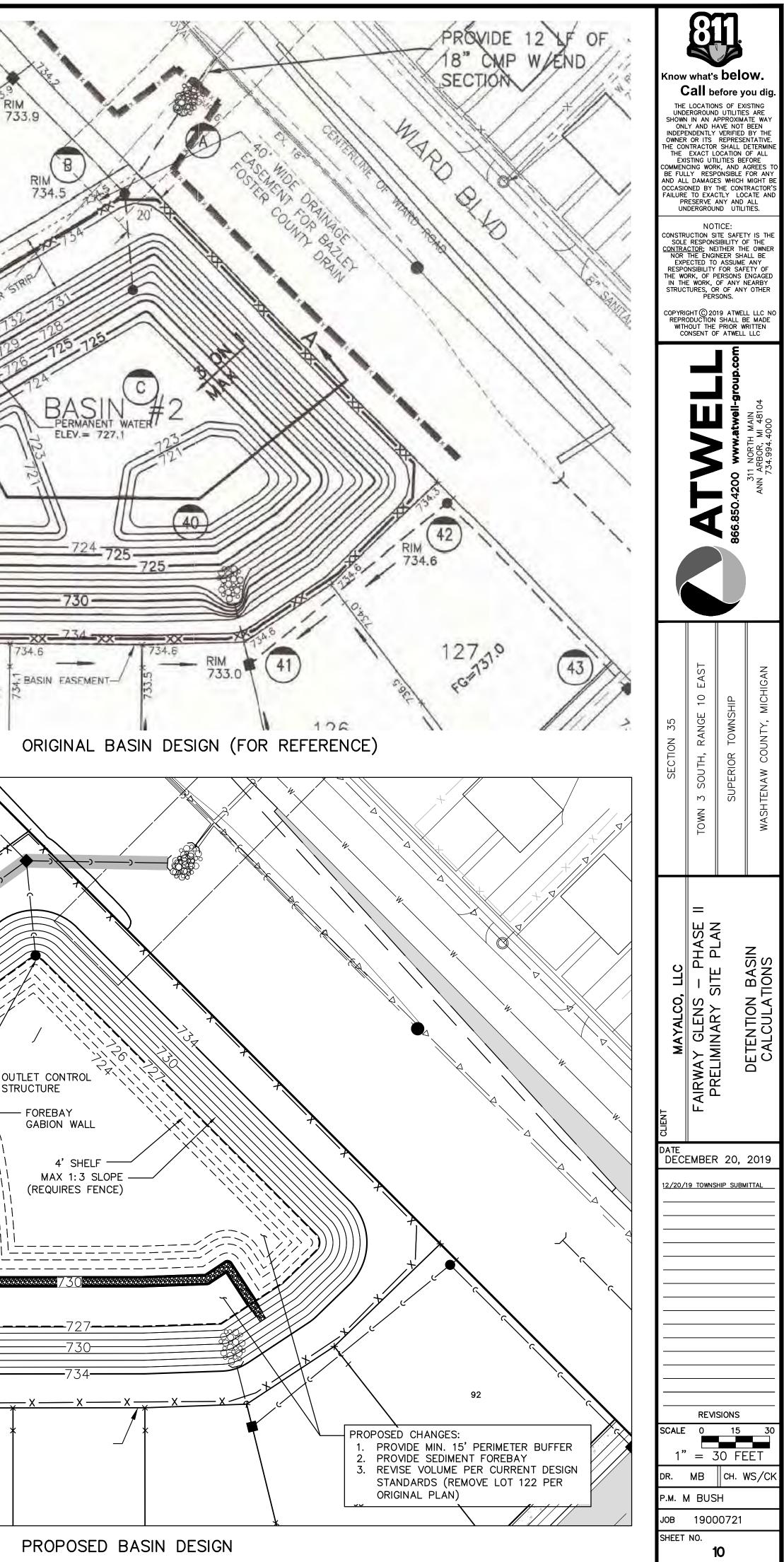
Ш

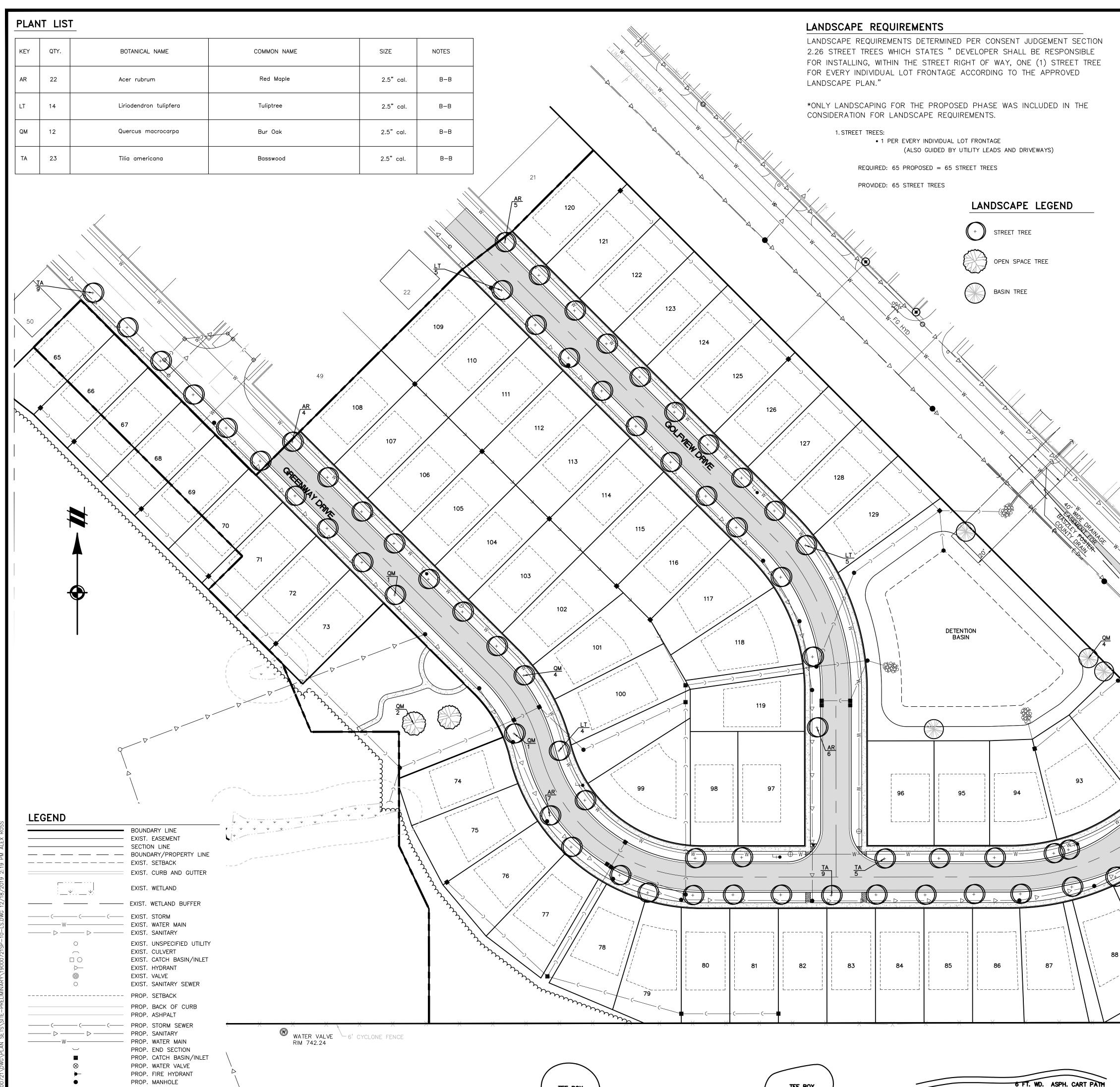
3

EAS⁻

10

	n: Superior Twp n: Basin #2 - PSP Phase 2 only - 15' min. b	ouffer all side		Atwell opes)		
W1	Determining Post-Development Cove				froofficient	
VVI	Determining Post-Development Cove					
		Total Cor		ainage Area = turbed Area =		7 Acres 7 Acres
	Cover Type	Soil Type	Area (sf)	Area (ac)	Runoff Coef	(c)(Area)
Rational Method Variables	Paved Parking Lots, roofs, driveways	A	241,956	5.55	0.95	229,858
d Var	Water Surface (Bank full EL) Developed Open Space, Good Condition	A A	23,522 419,672	0.54 9.63	1.00 0.15	23,522 62,951
etho	Developed Open Space, Good Condition		0	0.00		0
N lar				Total - S	Sum (c)(Area) =	316,331
Ratior					Area Total (sf)=	685,150
		vvei	gnted C-Sum	(c)(Area)/Sum	(ac) or Sum(sf)=	= 0.46
	Pervious Cover Type Developed Open Space, Good Condition	Soil Type A	Area (sf) 419,672	Area (ac) 9.63	Curve Number 39	(CN)(Area 16,367,192
ables	Developed Open Space, Good Condition		0	0.00		0
NRCS Variables						
NRC		Total - Sum Area Total -				16,367,192 419,672
				Area)/Sum(ac)	or Sum(sf)=	39
	Impervious Cover Type	Soil Type	Area (sf)	Area (ac)	Curve Number	(CN)(Area
es	Paved Parking Lots, roofs, driveways Water Surfaces	A	241,956 23,522	5.55 0.54	98 98	23,711,688 2,305,195
Variables	Water Surfaces	~	23,322	0.00	30	2,303,193
NRCS V		Total - Sum	CN)(Area) =			26,016,883
z		Area Total -	Sum(ac) of S	um(sf)=	an Crime (af)	265,478
		weighted Cl	N-SUM(CN)(A	Area)/Sum(ac) (or Sum(st)=	98
W2 A.	First Flush Runoff Calculations (Vff) Vff = (1") (1/12) (43560/1) (C) AC =				26,216	cf
					,	
W3 A.	Predevelopment Bankfull Runoff Calc 2 year/24 hour storm event	ulations (Vbf-	·pre)	P =	2.35	in
В.	Pervious Cover CN (Meadow)			CN =	30	
С. D.	S = (1000/CN)-10 Q = (P-0.2S)^2/(P+0.8S)			S = Q =	23.33 0.26	in in
E.	Pervious Cover Area			Area =	685,150	sf
F.	V _{bf-pre} = Q(1/12)Area			V _{bf-pre} =	14,580	cf
W4 A.	Pervious Cover Post-development Bar 2 year/24 hour storm event	nkfull Runoff	Calculations	(Vbf-per-post) P =	2.35	in
в.	Pervious Cover CN			CN =	39	
С. D.	S = (1000/CN)-10 Q = (P-0.2S)^2/(P+0.8S)			S = Q =	15.64 0.04	in in
E.	Pervious Cover Area			Area =	419,672	sf
F.	$V_{bf-per-post} = Q(1/12)$ Area			V _{bf-per-post} =	1,425	cf
W5	Impervious Cover Post-development	Bankfull Runc	off Calculatio	· · · ·		
A. B.	2 year/24 hour storm event Impervious Cover CN			P = CN =	2.35 98	in
C.	S = (1000/CN)-10			S =	0.20	in
D. E.	Q = (P-0.2S)^2/(P+0.8S) Impervious Cover Area			Q = Area =	2.12 265,478	in sf
F.	$V_{bf-imp-post} = Q(1/12)$ Area			V _{bf-imp-post} =	46,938	cf
W6	Pervious Cover Post-development 100	D-year Storm I	Runoff Calcu	lations <mark>(</mark> V100-p	er-post)	
А. В.	100 year storm event Pervious Cover CN			P = CN =	5.11 39	in
Б. С.	S = (1000/CN)-10			S =		in
D. E.	Q = (P-0.2S)^2/(P+0.8S) Pervious Cover Area			Q = Area =	0.22 419,672	in sf
F.	$V_{100-imp-post} = Q(1/12)$ Area			V _{100-imp-post} =	7,794	cf
W7	Impervious Cover Post-development	100-vear Stori	m Runoff Cal	culations (V100)-imp-post)	
Α.	100 year storm event			P =	5.11	in
В. С.	Pervious Cover CN S = (1000/CN)-10			CN = S =	98 0.20	in
D.	Q = (P-0.2S)^2/(P+0.8S)			Q =	4.87	in
E. F.	Pervious Cover Area V _{100-imp-post} = Q(1/12)Area			Area = V _{100-imp-post} =	265,478 107,806	sf cf
W8	Determine Time of Concentration (Tc-	·hrs)				
VVO	User specified; assume 25 minutes for			-		-
			Time of Co	ncentration =	0.42	hr
W9	Runoff Summary & Onsite Infiltration					
Α.	Runoff Summary from Previous Works $V_{\rm ff}$ =		cf*			
	V _{bf-pre} =	= 14,580	cf	Total BE Val		
	V _{bf-per-post} = V _{bf-imp-post} =			Total BF Volun	ne (V_{bf-post}) 48,363	cf
			cf	Total 100-year	Volume (V ₁₀₀)	
	V _{100-per-post} = V _{100-imp-post} =			, star 100-year	115,601	cf
В.	Determine Onsite Infiltration Require	ment				
	V _{bf-post} =	48,363				
	V _{bf-pre} = Bankfull Volume Difference =					
				rement (V _{inf}) =	33,783	lcf
			adon kequil	(v _{inf}) =	33,783	_ ~'
W10 A.	Detention / Retention Requirement $Q_p = 238.6 (T_c) ^ -0.82$				489.15	cfs/in-mi^2
В.	Total Site Area				15.7	ac
C. D.	Q ₁₀₀ = Q _{100-per} + Q _{100-imp} Peak Flow (PF) = (Q _p *Q _{100*} A)/640				5.10 61.148	in cfs
E.	Delta = PF - 0.15A	Colevier	Dotorti	upadiusta IV F	58.793	cfs
F.	V _{det} = (Delta/PF) x V ₁₀₀	Calculated	Detention (unadjusted) =	111,148	cf
W11	Determine Applicable BMPs and Assoc	ciated Volum	e Credits		N/A (assum	e no Infiltratio
W12	Infiltration / Detention Summary					
	Total BMP Credits Required per WCWF Total BMP Credits Provided:	RC Rules:			33,783 0	cf cf
	Difference:			-	(33,783)	_cf
	% Deficiency: Volume Penalty (prorated up to 20% b	based on BMP	deficiencv):		100.0% 20.0%	
	Detention Volume adjusted for BMP c		-,,'			af.
	Listantian Valuma adjusted for DMD a	redits V			111,148	cf

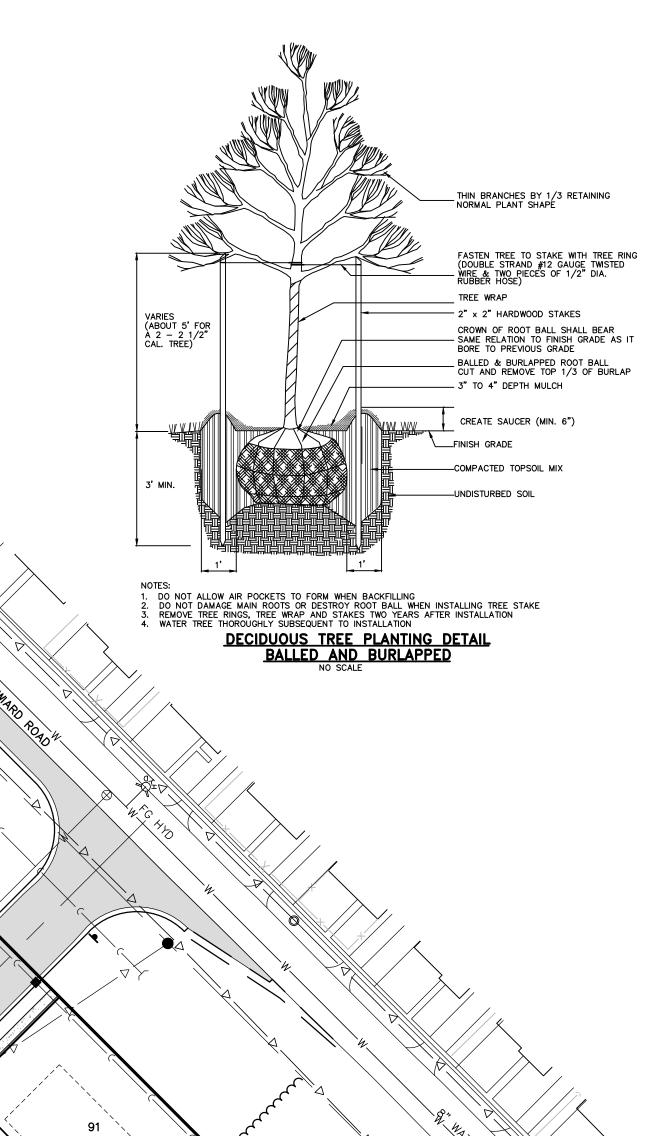

								.69/ 612	/	113
DET	Detention Basin Su	immary						3	0 1302	
Elevation	Surface Area (SF)	Depth (FT)	Cumulative Volume (CF)	First Flush Zff	Bank Full Zbf	100-Year Z100			1*	(49)
Zo 727.10 728.0	19,400 20,900	0	0 18,131	26,216	48,363	133,378		11 1	/	155.9 RIM
729.0	22,700	1.0	39,925	728.37	-	-		1 1 10°	G 121	733.9
730.0 731.0	24,500 26,400	1.0 1.0	63,519 88,963	-	729.36	-		1 113	136	1
732.0 733.0	28,300 30,300	1.0 1.0	116,307 145,602	-	-	- 732.58		1.11	-1 -35	
734.0	32,300	1.0	176,896	-	-	-		1/ 15 /	11	RI 7
		-	-	-	-	-		11/ 18: 1	1 .	15
		-	-	-	-	-		111 11 1	135.3	122
		-	-	-	-	-		F , 11.	K .	36
	•	•	Design Elevations	: 728.40	729.40	732.60		1	11	135%
	Total Basin Volume Freeboard Provided			=				1 10 1 to	11	CTON CER STRO
	Bankfull Pond Area			=				11 00/ 11/1	11	ROLL TOLL BUTTER STRIP
FOREBAY	Forebay Summary							11 11 22 1	135.	ELE BILL
	Required Volume ((Vfb)=0.05*V _{det}	6,669 cf						1 1 10	0455 X 39 100
Forebay Geome		Depth	Cumulative Volume		1			KP/1	4.5	1XNXA
Elevation 727.1	Surface Area (SF) 3,300	(FT) 0	(CF) 0	5% Forebay 6,669	100%			RM 11		IIX IA
728 729	4,000	1	3,280	- 728.78	100%			134.4		IS CASA
730	5,500	1	7,625 12,720	-	-			734.8	111	AN XNIII
			Design Elevation	: 728.80						
OUTLET	Outlet Control Stru 1. Standpipe outle		st flush" runoff					734.7	734.2 1 -	
	First Flush discharg	e should be release	d from in 24 hours	0.202				RIM	s' //	
	Qff = Vff / 24 hrs / 3 hff(ave) = 2/3 x (Zff	f - Zo)	Qff= hff(ave) =	= 0.867	ft			733.	74	
	Aff(required) = Qff Selected Orifice Di		2*h) A(required) =		sf]in					
	Area of each orifice Number of orifice			0.005	sf holes at elev.	727 10		(22)	21	
			_			/2/120				
	Check First Flush di Aff(actual) =	scharge release tim	e	0.0600) ft ²			1 5 2		
	Qff = A x 0.62 x sqrt Tff = Vff / (Qff x 36			0.2779 26.2	9 cfs 2 hrs	О.К.			*	734.6
			nkfull flood" discharge					ιο T	34.50 ST FENC	ROTECTION
	Bankfull should dis	charge within 36 to	48 hours						FENC	ING MATERIAL TO BE
	Check release from hbf(ave) = 2/3 x (Zk	of - Zo)	hbf(ave) =						APPF	OVED BY WCDC
	Qbf = A x 0.62 x sqr Tbf = Vbf / (Qbf x 3		Qbf = Tbf =			О.К.				
	Bankfull detained b	oetween 36-48 hrs i	using First Flush holes only	- no add'l hole	es required					OR
	Number of orifice	holes provided =	=	- 0	holes at elev.	728.40			128	
	3. Standpipe outle Q100 = Qa	t holes sizing - "10	D-yr flood" discharge Q100 =	= 2.36	cfs					
	Release from abov	e holes	hff =							
	hff = (Z100-Zo) hbf = (Z100-Zff)		hbf =	= 4.20	ft				*	
	Q = A x 0.62 x sqrt(6 Remaining flow =		Q100-Q=		cfs				129	
	A = Q100 /(.62 x sq Selected Orifice Di		A(required) =	= 0.19 1.5						
	Area of each orifice Number of orifice		-	0.0123		779 40				A D'
				15		125.40				
		ed to handle the 100	D-year restricted flow							× ////
	100-year restricted Choose outflow pi		Q = d =						1	
	Choose outflow pi Assume roughness		S = n =	0.2	%					
	Flow velocity at 10	0-yr restricted flow	r (Mannings) = V =	= 2.66	fps					
	Design Pipe Capaci	Ly =	=	= 4.70	CIS	ОК				
<u>BA</u> : 00 ⁻	SIN ELEVATIONS		SER DATA (SEE DETA LET PIPE:	<u>AIL)</u> 18 IN					7	
	727.10	о в оит	LET PIPE:	0.2%						FOR
	ST FLUSH 728.40 IKFULL 729.40			727.02 732.60				$\dot{\gamma}$		GAE
	IGN HWL 732.60				LES AT EL. 727.1		ASS MANHOLE — JCTURE (MH3)		Z	
	REBAY DTTOM 727.1 0			THRU FIRST FL (15) 1.5 IN. H	OLES AT EL. 729.4	4 TO	GINAL DESIGN, OW UPSTREAM			
тс	OP 730.00			732.85		P	DRAINAGE TO 			(RE
				734.00 732.85		BAZL	FOSTER DRAIN		->	
								-))-	×	
							н			
		/ S	ACKFILL WITH 3" WA TONE, THEN CHOKE	SHED WITH			P OF BANK (I)			//////
			IDOT 6A STONE				- OVERFLOW			
100 YR EL. ((D) / RIM (H)—		-48"- CMP		IN ALL MANAGEMENT		ELEV.(J)			
	_				AND		\rangle			xxx-
	R. HOLES (G)-			A MARTIN AND A MARTINA AND A MARTINA AND A MAR	AN	TI-SEEP COLL				
	ILL HOLES (F)— SH HOLES (E)—			OUTLET PIF	PE (A) (B)	FLOW	(C) OUTLET			_/ *
		· · · · / · · · · · · · · · · · · · · ·		MOR		PIPE INTO RISE	I			
				Ουτι	LET HOLES					
	_	2' SUMP		CON	CRETE BASE F	POURED IN PL				
	<u>DE1</u>	ENTION E	NO SCALE	<u>PIPE SC</u>	HEMATIC					
			JONLL							PR

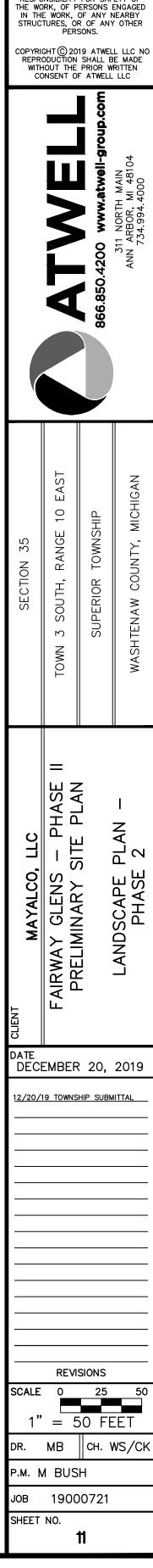

DET	Data ution Datis Cu							50	C III	. /	/	11
DET	Detention Basin Su	Immary						32	6	302		
Elevation	Surface Area (SF)	Depth	Cumulative Volume	First Flush	Bank Full	100-Year		1				(49)
Zo 727.10	19,400	(FT) 0	(CF) 0	26,216	Z bf 48,363	Z100 133,378		11	1	/		139
728.0	20,900	0.9	18,131	-	-	-		11	1	A 1	21	13 RI 7.
729.0 730.0	22,700 24,500	1.0 1.0	39,925 63,519	728.37	- 729.36	-		111	139	Cit,	41 /	/ /.
731.0	26,400	1.0	88,963	-	-	-		11	V	136	/	
732.0 733.0	28,300 30,300	1.0 1.0	116,307 145,602	-	-	- 732.58		1	11	-	15.9	
734.0	32,300	1.0	176,896	-	-	-		t	111	/	- Alt	
		-	-	-	-	-		1 33	111 6	11		
		-	-	-	-	-		1	2/1/1	3/	\$ 100	
		-	-	-	-	-		11	11 111	1332	11/122	11
		-	-	-	-	-		ty '	1 1	1	56	11
			Design Elevations:	728.40	729.40	732.60		1 have	1 7	11	135.9	NO
	Total Basin Volume Freeboard Provided			=	176,896 1.40			1 10	15	111	51014	BUTTER
	Bankfull Pond Area	-		=				1/ /1	11 00/	11	PROVE	S' BUP
FOREBAY	Forebay Summary							111	1 17 10 11	135.0	- AL	2 537
	Required Volume (Vfb)=0.05*V _{det}	6,669 cf					16	1. 1.	* 115-	WIDE C	1600
Forebay Geome	etry (West)							Via	1. 1	ISA HI	10 CESS	12/10
Elevation	Surface Area (SF)	Depth	Cumulative Volume	5% Forebay				K		2114	1110	V/X
727.1	3,300	(FT) 0	(CF) 0		100%			RA	N N V	II TR		XII
728 729	4,000 4,700	1	3,280	-				KA	4.4	1 11	WHIS CO	XIN
729	5,500	1	7,625 12,720	728.78				734.8	1 143	1		IN
			Design Elevation:	728.80				STATE	light	TA VA		
OUTLET	Outlet Control Stru	cture Sizing						734.7	G3)5	IM 9	12	
	1. Standpipe outle First Flush discharg								2	34.0		y ~
	Qff = Vff / 24 hrs / 3		Qff=						RIM	<u>s</u> 1/11		
	hff(ave) = 2/3 x (Zff Aff(required) = Qff		hff(ave) = *h) A(required) =						18-	00	2	
	Selected Orifice Di	ameter =		1	in				1 Van			_
	Area of each orifice Number of orifice l			0.005	sf holes at elev.	727.10			122	21		
								1				-
	Check First Flush di Aff(actual) =	scharge release time	2	0.0600	ft ²			/ 5	115		n = 1	
	Qff = A x 0.62 x sqrt			0.2779	cfs	0.11		54	- 44	* *	XX	XX-+
	Tff = Vff / (Qff x 360	JU)		26.2	hrs	О.К.			39 T	734.50	5' PROTECTION	/
	2. Standpipe outle Bankfull should dise		kfull flood" discharge							50	FENCE	
	Check release from	first flush holes only	V						111 1		FENCING MATER	WCDC
	hbf(ave) = 2/3 x (Zb Qbf = A x 0.62 x sqr		hbf(ave) = Qbf =					1	1611		ONT OTHER BIL	
	Tbf = Vbf / (Qbf x 3		Tbf =	36.4	hr	О.К.						
			sing First Flush holes only	- no add'l hole.	s required							
	Number of orifice	holes provided -										
	Number of office i	loles provided –	=	0	holes at elev.	728.40			1	28		
	3. Standpipe outle		= -yr flood" discharge			728.40			1	28		
		t holes sizing - "100	= -yr flood" discharge Q100 =			728.40			1	28		
	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo)	t holes sizing - "100	Q100 = hff =	2.36	cfs ft	728.40			1	28		
	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6	t holes sizing - "100 e holes	Q100 = hff = hbf = sqrt(64.4*hbf) =	2.36 5.50 4.20 0.70	cfs ft ft cfs	728.40			1	28		
	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow =	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 >	Q100 = hff = hbf = sqrt(64.4*hbf) = Q100-Q=	2.36 5.50 4.20 0.70 1.65	cfs ft ft cfs cfs	728.40			1	28	129	
	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 > rt(2*32.2*h)) ameter =	Q100 = hff = hbf = sqrt(64.4*hbf) =	2.36 5.50 4.20 0.70 1.65 0.19 1.5	cfs ft ft cfs cfs sf in	728.40			1	28	129	
	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 > rt(2*32.2*h)) ameter = ≥ =	Q100 = hff = hbf = sqrt(64.4*hbf) = Q100-Q=	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123	cfs ft ft cfs cfs sf in sf				1	28	129	
	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 > rt(2*32.2*h)) ameter = e = holes required =	Q100 = hff = hbf = sqrt(64.4*hbf) = Q100-Q=	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123	cfs ft ft cfs cfs sf in				1	28	129	
	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I 4. Riser Outlet Pipe <i>Outlet pipe designe</i>	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 x rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100	Q100 = hff = hbf = Q100-Q= A(required) = =-year restricted flow	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123	cfs ft ft cfs cfs sf in sf holes at elev.					28	129	
	 3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I 4. Riser Outlet Pipe <i>Outlet pipe designee</i> 100-year restricted 	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 > rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow =	Q100 = hff = hbf = c sqrt(64.4*hbf) = Q100-Q= A(required) = =	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15	cfs ft ft cfs cfs sf in sf holes at elev.					28	129 N	
	3. Standpipe outled Q100 = Qa Release from abow hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I 4. Riser Outlet Pipe <i>Outlet pipe designe</i> 100-year restricted Choose outflow pip Choose outflow pip	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 x rt(2*32.2*h)) ameter = e = holes required = e Design ad to handle the 100 flow = pe diameter = pe slope =	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S =	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2	cfs ft ft cfs cfs sf in sf holes at elev. cfs in					28	129	
	 3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I 4. Riser Outlet Pipe <i>Outlet pipe designee</i> 100-year restricted Choose outflow pip 	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 > rt(2*32.2*h)) ameter = e = holes required = e Design rd to handle the 100 flow = pe diameter = pe slope = factor	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = n =	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013	cfs ft ft cfs cfs sf in sf holes at elev. cfs in					28	129	
	 3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I 4. Riser Outlet Pipe <i>Outlet pipe designe</i> 100-year restricted Choose outflow pip Choose outflow pip Assume roughness 	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 > rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = pe diameter = pe slope = factor D-yr restricted flow	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = n =	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66	cfs ft ft cfs cfs sf in sf holes at elev. cfs in %					28	129	
	 3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I 4. Riser Outlet Pipe <i>Outlet pipe designe</i> 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 > rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = pe diameter = pe slope = factor D-yr restricted flow	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = n = (Mannings) = V =	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.013 2.66	cfs ft ft cfs cfs sf in sf holes at elev. cfs in %	729.40				28	129	
BA	 3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I 4. Riser Outlet Pipe <i>Outlet pipe designe</i> 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 × rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = pe diameter = pe slope = factor 0-yr restricted flow ty =	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = n = (Mannings) = V =	2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66 4.70	cfs ft ft cfs cfs sf in sf holes at elev. cfs in %	729.40				28		
-	 3. Standpipe outlee Q100 = Qa Release from above hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 / (.62 x sq Selected Orifice Di Area of each orifice Number of orifice Dutlet pipe designee 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci 	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 > rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = be diameter = be slope = factor D-yr restricted flow ty = OUTLET RIS	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = = SER DATA (SEE DETA ET PIPE:	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66 4.70 ILL) 18 IN 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in %	729.40				28	129	OU
ου	 3. Standpipe outlee Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 × rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = oe diameter = oe slope = factor 0-yr restricted flow ty = $O_{yr} = OUTLET RISA OUTLB OUTL$	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = = (Mannings) = V = = SER DATA (SEE DETA ET PIPE: ET PIPE:	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66 4.70 18 IN 0.2% 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in %	729.40				28	129	
OU	 3. Standpipe outlee Q100 = Qa Release from above hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 / (.62 x sq Selected Orifice Di Area of each orifice Number of orifice Dutlet pipe designee 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci 	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = oe diameter = oe slope = factor 0-yr restricted flow ty = $\frac{OUTLET RIS}{A \qquad OUTL0 \qquad B \qquad OUTL0 \qquad C \qquad OUTL$	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET PIPE: ET INVERT:	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66 4.70 ILL) 18 IN 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in %	729.40	BYPASS MANHOLF			28		
OU FIR BAI DES	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design rd to handle the 100 flow = oe diameter = oe slope = factor 0-yr restricted flow ty = $\frac{OUTLET RIS}{2}$	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FLUSH DISCHARGE:	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs	729.40 ОК	BYPASS MANHOLE STRUCTURE (MH3)					OU
OU FIR BAI DES FOI	 3. Standpipe outlee Q100 = Qa Release from abow hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice Di Assume routlet Pipe Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci 	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = 2 Design ed to handle the 100 flow = pe diameter = pe diameter = pe slope = factor 0-yr restricted flow ty = 0 A OUTLET RIS 0 A OUTL 0 B OUTL 0 B OUTL 0 D DESIG 0 E FIRST F BANK	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = (Mannings) = V = = SER DATA (SEE DETA ET PIPE: ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FLUSH DISCHARGE: (FULL DISCHARGE:	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 2.36 4.70 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.166 4.70 3.166 4.70 3.166 4.70 3.167 3.167 3.167 3.160 3.17 3.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.10 3.10	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 ТС	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM				129	
OU FIR BAI DES FOI B	3. Standpipe outle Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 × sqrt(6 Remaining flow = A = Q100 /(.62 × sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Number of orifice D Outlet pipe designed 100-year restricted Choose outflow pip Choose outflow pip Choos	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = be diameter = be slope = factor 0-yr restricted flow ty = $\frac{OUTLET RIS}{C}$ A OUTL D B OUTL D D DESIG D D DESIG D E FIRST F BANK D G DESIG	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FLUSH DISCHARGE: GN DISCHARGE:	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 2.36 4.70 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.166 4.70 3.166 4.70 3.166 4.70 3.167 3.166 4.70 3.18 1N 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs	729.40 ОК 4 ПС ОГ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO					
OU FIR BAI DES FOI B	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	tholes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = be diameter = be slope = factor D-yr restricted flow ty = $\frac{OUTLET RIS}{A & OUTL}$ D & A OUTL D & B OUTL D & D DESIG D & D ESIG D & E FIRST F & BANK D & G DESIG H & OVEF I & TOP (Q100 = hff = hbf = hbf = Q100-Q= A(required) = A(required) = e-year restricted flow Q = d = S = n = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FILUSH DISCHARGE: GN DISCHARGE: CFULL D	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HO 732.85 734.00 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM					
OU FIR BAI DES FOI B	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	tholes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = be diameter = be slope = factor D-yr restricted flow ty = $\frac{OUTLET RIS}{A & OUTL}$ D & A OUTL D & B OUTL D & D DESIG D & D ESIG D & E FIRST F & BANK D & G DESIG H & OVEF I & TOP (Q100 = hff = hbf = hbf = Q100-Q= A(required) = A(required) = e-year restricted flow Q = d = S = n = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FILUSH DISCHARGE: GN DISCHARGE: CFULL D	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 2.36 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.16 4.70 3.16 3.17 3.18 1.18 1.18 1.18 1.18 1.18 1.18 1.10 3.2.66 4.70 3.2.60 (11) 1 1.18 1.10 1.15 <	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO					
OU FIR BAI DES FOI B	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	tholes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = be diameter = be slope = factor D-yr restricted flow ty = $\frac{OUTLET RIS}{A & OUTL}$ D & A OUTL D & B OUTL D & D DESIG D & D ESIG D & E FIRST F & BANK D & G DESIG H & OVEF I & TOP (Q100 = hff = hbf = hbf = Q100-Q= A(required) = A(required) = e-year restricted flow Q = d = S = n = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FILUSH DISCHARGE: GN DISCHARGE: CFULL D	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HO 732.85 734.00 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO					
OU FIR BAI DES FOI B	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	tholes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = be diameter = be slope = factor D-yr restricted flow ty = $\frac{OUTLET RIS}{A & OUTL}$ D & A OUTL D & B OUTL D & D DESIG D & D ESIG D & E FIRST F & BANK D & G DESIG H & OVEF I & TOP (Q100 = hff = hbf = hbf = Q100-Q= A(required) = A(required) = e-year restricted flow Q = d = S = n = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FILUSH DISCHARGE: GN DISCHARGE: CFULL D	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HO 732.85 734.00 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO					
OU FIR BAI DES FOI B	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	tholes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design ed to handle the 100 flow = be diameter = be slope = factor D-yr restricted flow ty = $\frac{OUTLET RIS}{A & OUTL}$ D & A OUTL D & B OUTL D & D DESIG D & D ESIG D & E FIRST F & BANK D & G DESIG H & OVEF I & TOP (Q100 = hff = hbf = hbf = Q100-Q= A(required) = A(required) = e-year restricted flow Q = d = S = n = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FILUSH DISCHARGE: GN DISCHARGE: CFULL D	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HO 732.85 734.00 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO					
OU FIR BAI DES FOI B	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = e = holes required = e Design ad to handle the 100 flow = be diameter = be slope = factor 0-yr restricted flow ty = $\frac{OUTLET RIS}{1000000000000000000000000000000000000$	Q100 = hff = hbf = csqrt(64.4*hbf) = Q100-Q= A(required) = A(required) = generative flow Q = d = S = n = (Mannings) = V = (Mannings) = V = SER DATA (SEE DETA ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FLUSH DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: CFULL DISCHARGE: GN DISCHARGE: CFULL	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HO 732.85 734.00 732.85 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN					
OU FIR BAI DES FOI B	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIG D D DESIG D D DESIGD D D DESIGD D D D D D D D D D D D D D D D D D D $	Q100 = hff = hbf = csqrt(64.4*hbf) = Q100-Q= A(required) = equired) = Q100-Q= A(required) = quired = generation = (Mannings) = V = (Mannings) = (Man	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HOL 732.85 734.00 732.85 SHED 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ ВАZ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN					
OU FIR BAI DES FOI B	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIG D D DESIG D D DESIGD D D DESIGD D D D D D D D D D D D D D D D D D D $	Q100 = hff = hbf = csqrt(64.4*hbf) = Q100-Q= A(required) = equired) = equired flow Q = d = S = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FILUSH DISCHARGE: GN DIS	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HOL 732.85 734.00 732.85 SHED 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ ВАZ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS—THROUGH TO EY—FOSTER DRAIN					
OU FIR BAI DES FOI B T	3. Standpipe outler Q100 = Qa Release from abov hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Area of each orifice D Area of each orifice Area of each orifice D Area o	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIG D D DESIG D D DESIGD D D DESIGD D D D D D D D D D D D D D D D D D D $	Q100 = hff = hbf = csqrt(64.4*hbf) = Q100-Q= A(required) = equired) = Q100-Q= A(required) = quired = generation = (Mannings) = V = (Mannings) = (Man	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HOL 732.85 734.00 732.85 SHED 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ ВАZ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN					
OU FIR BAI DES FOI B T	3. Standpipe outler Q100 = Qa Release from abow hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I Area of each orifice Number of orifice I Area of each orifice Number of orifice I Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci ASIN ELEVATIONS TILET 727.10 RST FLUSH 728.40 NKFULL 729.40 SIGN HWL 732.60 REBAY COTTOM 727.10 OP 730.00	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIG D D DESIG D D DESIGD D D DESIGD D D D D D D D D D D D D D D D D D D $	Q100 = hff = hbf = csqrt(64.4*hbf) = Q100-Q= A(required) = equired) = equired flow Q = d = S = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FILUSH DISCHARGE: GN DIS	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HOL 732.85 734.00 732.85 SHED 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs the cfs ster the construction of	729.40 ОК 4 РЕ ТС ОГ ВАZ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN MULCH TOP OF BANK (I)					
GN 100 YR EL.	3. Standpipe outler Q100 = Qa Release from abow hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I Area of each orifice Number of orifice I Area of each orifice Number of orifice I Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci ASIN ELEVATIONS TILET 727.10 RST FLUSH 728.40 NKFULL 729.40 SIGN HWL 732.60 REBAY COTTOM 727.10 OP 730.00	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIG D D DESIG D D DESIGD D D DESIGD D D D D D D D D D D D D D D D D D D $	Q100 = hff = hbf = csqrt(64.4*hbf) = Q100-Q= A(required) = equired) = equired flow Q = d = S = (Mannings) = V = (Mannings) = V = ET PIPE: ET PIPE: ET INVERT: GN ELEVATION =: FILUSH DISCHARGE: GN DIS	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HOL 732.85 734.00 732.85 SHED 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs cfs cfs LES AT EL. 727.1 USH HOLES DLES AT EL. 729.4	729.40 ОК 4 РЕ ТС ОГ ВАZ	STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN MULCH TOP OF BANK (I)					
GN 100 YR EL. 100 YR EL.	3. Standpipe outlet Q100 = Qa Release from abow hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I Area of each orifice Number of orifice I Outlet pipe designed 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci ASIN ELEVATIONS TILET 727.10 RST FLUSH 728.40 NKFULL 729.40 SIGN HWL 732.60 REBAY OTTOM 727.10 (D) / RIM (H)— YR. HOLES (G)— ULL HOLES (F)—	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIG D D DESIG D D DESIGD D D DESIGD D D D D D D D D D D D D D D D D D D $	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = = SER DATA (SEE DETA ET PIPE: ET PIPE: ET PIPE: ET PIPE: ET INVERT: SN ELEVATION =: FLUSH DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: CFULL DISCHARGE: GN DISCHARGE: CFULL DISCHARGE: CFULL DISCHARGE: ACKFILL WITH 3" WA TONE, THEN CHOKE DOT 6A STONE ACKFILL WITH 3" WA	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66 4.70 18 IN 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HO 732.85 734.00 732.85 SHED WITH 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs ES AT EL. 727.1 USH HOLES DLES AT EL. 729.4	729.40 ОК Ф 4 ВА2 ТI-SEEP COL	ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN MULCH TOP OF BANK (I)					
GN 100 YR EL. 100 YR EL.	3. Standpipe outlet Q100 = Qa Release from abow hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice D Area of each orifice Number of orifice D Area of each orifice Doublet pipe designed 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci ASIN ELEVATIONS JTLET 727.10 RST FLUSH 728.40 NKFULL 729.40 SIGN HWL 732.60 REBAY COTTOM 727.10 OP 730.00 (D) / RIM (H)— YR. HOLES (G)—	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIG D D DESIG D D DESIGD D D DESIGD D D D D D D D D D D D D D D D D D D $	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = SER DATA (SEE DETA IT PIPE: ET PIPE: ET PIPE: ET INVERT: SN ELEVATION =: FLUSH DISCHARGE: GN DISCHARGE: ACKFILL WITH 3" WA TONE, THEN CHOKE DOT 6A STONE ACKFILL WITH 3" WA TONE, THEN CHOKE DOT 6A STONE	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66 4.70 18 18 0.2% 727.02 732.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HO 732.85 734.00 732.85 SHED WITH 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs ES AT EL. 727.1 USH HOLES DLES AT EL. 729.4	729.40 ОК 4 1 SEED AND SEED AND	ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN MULCH TOP OF BANK (I)					
GN 100 YR EL. 100 YR EL.	3. Standpipe outlet Q100 = Qa Release from abow hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I Area of each orifice Number of orifice I Outlet pipe designed 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci ASIN ELEVATIONS TILET 727.10 RST FLUSH 728.40 NKFULL 729.40 SIGN HWL 732.60 REBAY OTTOM 727.10 (D) / RIM (H)— YR. HOLES (G)— ULL HOLES (F)—	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIGC OUTL D D DESIGC DUTLET RISA OUTL D D DESIGC OUTL D D DESIGC DESIG$	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = = SER DATA (SEE DETA ET PIPE: ET PIPE: ET PIPE: ET PIPE: ET INVERT: SN ELEVATION =: FLUSH DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: CFULL DISCHARGE: GN DISCHARGE: CFULL DISCHARGE: CFULL DISCHARGE: ACKFILL WITH 3" WA TONE, THEN CHOKE DOT 6A STONE ACKFILL WITH 3" WA	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 3.2.66 4.70 3.2.66 4.70 3.2.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HO 732.85 734.00 732.85 SHED WITH SHED WITH 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs cfs ES AT EL. 727.1 USH HOLES DLES AT EL. 729.4	729.40 ОК 4 1 SEED AND SEED AND	ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN MULCH TOP OF BANK (I)					
GN 100 YR EL. 100 YR EL.	3. Standpipe outlet Q100 = Qa Release from abow hff = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6 Remaining flow = A = Q100 /(.62 x sq Selected Orifice Di Area of each orifice Number of orifice I Area of each orifice Number of orifice I Outlet pipe designed 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capaci ASIN ELEVATIONS TILET 727.10 RST FLUSH 728.40 NKFULL 729.40 SIGN HWL 732.60 REBAY OTTOM 727.10 (D) / RIM (H)— YR. HOLES (G)— ULL HOLES (F)—	t holes sizing - "100 e holes $54.4*hff) + A \times 0.62 \times$ rt(2*32.2*h)) ameter = 2= holes required = 2 Design rd to handle the 100 flow = pe diameter = pe diameter = pe slope = factor $D-yr restricted flow ty = \frac{OUTLET RIS}{D}A OUTL D D DESIG D D DESIGC OUTL D D DESIGC DUTLET RISA OUTL D D DESIGC OUTL D D DESIGC DESIG$	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = = SER DATA (SEE DETA ET PIPE: ET PIPE: ET PIPE: ET INVERT: SN ELEVATION =: FLUSH DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: CFULL DISCHARGE: CFULL DISCHARGE: ACKFILL WITH 3" WA TONE, THEN CHOKE DOT 6A STONE ACKFILL WITH 3" WA TONE, THEN CHOKE DOT 6A STONE	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 2.36 18 0.2 0.013 2.66 4.70 3.2.66 4.70 3.2.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HOL 732.85 734.00 732.85 SHED WITH WITH 	cfs ft ft cfs cfs sf in sf holes at elev. cfs in % fps cfs ES AT EL. 727.1 USH HOLES DLES AT EL. 729.4	729.40 ОК 4 1 SEED AND SEED AND	ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN MULCH TOP OF BANK (I)					
GN 100 YR EL. 100 YR EL.	3. Standpipe outlet Q100 = Qa Release from abow hhf = (Z100-Zo) hbf = (Z100-Zff) Q = A x 0.62 x sqrt(6) Remaining flow = A = Q100 /(.62 x sq) Selected Orifice Di Area of each orifice Number of orifice Di Area of each orifice Outlet pipe designed 100-year restricted Choose outflow pip Assume roughness Flow velocity at 100 Design Pipe Capacit XSIN ELEVATIONS VTLET 727.10 RST FLUSH 728.40 NKFULL 729.40 SIGN HWL 732.60 REBAY 730.00 (D) / RIM (H)— YR YR. HOLES (G)— YSH HOLES (F)— YSH HOLES (F)— YSH HOLES (E)—	t holes sizing - "100 e holes 54.4*hff) + A x 0.62 × rt(2*32.2*h)) ameter = 2 = holes required = 2 Design 2 Design 2 Design 2 d to handle the 100 flow = 2 Design 2 d to handle the 100 flow = 2 Design 2 d to handle the 100 flow = 2 Design 2 Design	Q100 = hff = hbf = Q100-Q= A(required) = -year restricted flow Q = d = S = (Mannings) = V = = SER DATA (SEE DETA ET PIPE: ET PIPE: ET PIPE: ET INVERT: SN ELEVATION =: FLUSH DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: GN DISCHARGE: CFULL DISCHARGE: CFULL DISCHARGE: ACKFILL WITH 3" WA TONE, THEN CHOKE DOT 6A STONE ACKFILL WITH 3" WA TONE, THEN CHOKE DOT 6A STONE	 2.36 5.50 4.20 0.70 1.65 0.19 1.5 0.0123 15 0.013 2.66 4.70 3.2.66 4.70 3.2.66 4.70 3.2.66 4.70 3.2.60 (11) 1 IN. HOL THRU FIRST FL (15) 1.5 IN. HOL 732.85 734.00 732.85 734.00 732.85 SHED WITH WITH 	cfs ft ft cfs cfs in sf holes at elev. cfs in % fps cfs ES AT EL. 727.1 USH HOLES DLES AT EL. 729.4 FAR OUTLET F ET HOLES DLES AT EL. 729.4	729.40 OK PE TC OF BAZ TI-SEEP COL <u>FLOW</u> POURED IN P	ALLOW UPSTREAM SITE DRAINAGE TO ASS-THROUGH TO EY-FOSTER DRAIN MULCH TOP OF BANK (I)					

								. 8/	6120	1	11	
DET	Detention Basin Su	mmary						132	360 48	32/	2	1
evation	Surface Area (SF)	Depth	Cumulative Volume	First Flush	Bank Full	100-Year		*	12	-	(49)	5
727.10	19,400	(FT) O	(CF) 0	Zff 26,216	Z bf 48,363	Z100 133,378		11	//			0.
728.0 729.0	20,900 22,700	0.9 1.0	18,131 39,925	- 728.37	-	-		11		8 121	11	RIN 73
730.0 731.0	24,500 26,400	1.0 1.0	63,519 88,963	-	729.36	-		111	13/	14 L	/	
732.0	28,300	1.0	116,307	-	-	-		11	X	10	3	
733.0 734.0	30,300 32,300	1.0 1.0	145,602 176,896	-	-	732.58		1 21	11	122		
		-	-	-	-	-		135.00	11	1/		
		-	-	-	-	-		X	1 1 232.3	1	3, 122	
		-	-	-	-	-		11	11/14		136	1
		-	- Design Elevations:	- 728.40	- 729.40	732.60		Pr 1	111 15		· · · · ·	1
		Provided to EL 734 = = Top of Bank - Z100		=	176,896 1.40			1 10	11 187		TON	15
	Bankfull Pond Area =	5-1 		=	0.54			1/ 1/	11. 11 00/	1	PROTECTION 25 BUTTER	1
REBAY	Forebay Summary							11 11.	11 11 11	135.0 - 5	Ka 13/	2
	Required Volume (Vfb)=0.05*V _{det}	6,669 cf					121	11 1/ /	1 Prover	CCE55 130	2
ay Geometry		Depth	Cumulative Volume					K/p)	1	111/	11XNX	2
evation 727.1	Surface Area (SF) 3,300	(FT) 0	(CF) 0	5% Forebay 6,669	100%			RM	1	1 Provent	(IIXI)	2
728	4,000 4,700	1	3,280	-	100%			754.4	+ + 1		NS CON	3
729 730	4,700 5,500	1	7,625 12,720	728.78				734.8		-HAL	Wall In X	
			Design Elevation:	728.80				TETT		1/221		
	Outlet Control Stru	cture Sizing t holes sizing - "first	flush" runoff					. 734.7	G3 RIM 734.3	YE		L
	First Flush discharge	e should be released		0.303	efe				RIMS		IIINHIII	
	Qff = Vff / 24 hrs / 3 hff(ave) = 2/3 x (Zff Aff(required) = Off		hff(ave) =	0.867	ft				733.74	XX		_
	Selected Orifice Dia	ameter =	*h) A(required) =	1	in							
	Area of each orifice Number of orifice h			0.005 11	sf holes at elev.	727.10			22 21			
	Check First Flush dis	charge release time						1	1			
	Aff(actual) =			0.0600				4 8	*73	11	00 00	
	Qff = A x 0.62 x sqrt Tff = Vff / (Qff x 360			0.2779 26.2		О.К.			*73	0.0		Ť
			kfull flood" discharge						34.50	P S'		*
	Check release from	harge within 36 to 4 first flush holes only	,						IN IN		NCING MATERIAL TO BE	134
	hbf(ave) = 2/3 x (Zb Qbf = A x 0.62 x sqrt		hbf(ave) = Qbf =	0.369	cfs			1 16	1P + 1	1		
	Tbf = Vbf / (Qbf x 36		Tbf =			О.К.						
	<i>Bankfull detained b</i> Number of orifice h		sing First Flush holes only - =		s required holes at elev.	728.40						
	3. Standpipe outlet	t holes sizing - "100-	yr flood" discharge						128			\mathbf{X}
	Q100 = Qa Release from above	e holes	Q100 =	2.36	cfs							
	hff = (Z100-Zo) hbf = (Z100-Zff)		hff = hbf =					×		/	<u>ک</u>	\searrow
		4.4*hff) + A x 0.62 x	sqrt(64.4*hbf) = Q100-Q=	0.70 1.65						129		
	A = Q100 /(.62 x sqr Selected Orifice Dia		A(required) =									>
	Area of each orifice	· =	1	0.0123	sf	720.40					A D'	
	Number of orifice h		=	15	holes at elev.	729.40					K N /	/
		d to handle the 100-								A MARINE AND A MAR	////	//
	100-year restricted Choose outflow pip	oe diameter =	Q = d =	18	in							/
	Choose outflow pip Assume roughness		S = n =		%							1
	Flow velocity at 100 Design Pipe Capacit)-yr restricted flow (ty =	(Mannings) = V = =			ОК						1
										(((
BAS		OUTLET RIS	ER DATA (SEE DETA	IL)						, (((((0U ⁻
OUTL		A OUTL	ET PIPE: 1	L8 IN								STR
FIRST	727.10 FLUSH 728.40			0.2% 727.02								
BANK	FULL 729.40 GN HWL 732.60			732.60 11) 1 IN HOL	ES AT EL. 727.1		BYPASS MANHOLE -					, \
FORE	BAY	F BANK	FULL DISCHARGE: 1	THRU FIRST FL	JSH HOLES		STRUCTURE (MH3) ORIGINAL DESIGN, ALLOW UPSTREAM					1
TO	том 727.10 > 730.00			15) 1.5 IN. HC 732.85)LES AT EL. 729.4	OF	SITE DRAINAGE TO SSITE DRAINAGE TO SASS-THROUGH TO					1 j 1 j
				734.00 732.85			EY-FOSTER DRAIN					
		5 51122	, , , , , , , , , , , , , , , , , , ,	52.05						2		
								ind	I	$\hat{\lambda}$! '
												1000
					_		MULCH		, c _			
		/ ST	ACKFILL WITH 3" WAS ONE, THEN CHOKE V DOT 6A STONE	SHED WITH	\langle	-	TOP OF BANK (I)			- 4 A		_
			OOT 6A STONE					9	7			_
YR EL. (E) / RIM (H)—					7	ELEV.(J)					
100 YF	. HOLES (G)			A REAL PROPERTY OF THE REAL PR							x x x	
BANKFUL	L HOLES (F)					FLOW				* *	/	*
	HOLES (E)			OUTLET PIP		FLOW	(C) OUTLET			×	<u> </u>	
					AR OUTLET P ET HOLES	PIPE INTO RIS	ER					
		2' SUMP -		WIRE	MESH RETE BASE F		ACE	1 - - - - - - - -				
	DET	ENTION B	ASIN STANDP			UUKLU IN P				4		
	_		NO SCALE									

	Detention Basin Su							200	6120	/ //
ET	Detention Basin Su	innary						2/	6.0 .001	
ation	Surface Area (SF)	Depth	Cumulative Volume	First Flush	Bank Full	100-Year		1	1	(49)
		(FT)	(CF)	Zff	Zbf	Z100		11	11	
727.10 28.0	19,400 20,900	0	0 18,131	26,216	48,363 -	133,378		11	1/ .	13°R
29.0	22,700	1.0	39,925	728.37	-	-		11	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	121 // 7
30.0 31.0	24,500 26,400	1.0 1.0	63,519	-	729.36	-		1.11	13/	4
32.0	28,300	1.0	88,963 116,307	-	-	-		11/4		6.1
33.0	30,300	1.0	145,602	-	-	732.58		11 4	1	135.0
34.0	32,300	1.0 -	- 176,896	-	-	-		her /	11	11
		-	-	-	-	-		39.52	111	/
		-	-	-	-	-		7 1	1 11 353	G 122
		-	-	-	-	-		1 1	1111	11/22
		-	-	-	-	-		ty .	111 4	6
			Design Elevations:	728.40	729.40	732.60		the 1	11/12	135%
		Provided to EL 734 = = Top of Bank - Z100		=	176,896 1.40			1 10 1	111 15	TON
	Bankfull Pond Area	5-1 C		=	0.54			1/ 1/	11/10/1	150 SENCE 25 BUTTER
								11 11 -	7400 11 111.	1350 Security 25 (3-1)
	Forebay Summary Required Volume (Vfb)=0.05*V	6,669 cf					111.	1 1 14	WIDE TE TOTO
	nequired volume ((15)-0.05 V det	0,005 01						1 5 11	10 COLESS 130
Geometry	(West)	Douth	Cumulative Volume					K(P)//	1.5	M CARA
ation	Surface Area (SF)	Depth (FT)	(CF)	5% Forebay				Inter 1		W (IIXI)
27.1 '28	3,300 4,000	0	0	6,669	100%			734.4		
29	4,700	1	3,280 7,625	- 728.78					5 7 1	
'30	5,500	1	12,720	-				734.8	XX III	
			Design Elevation:	728.80				AFFE -	NA NA	
TLET	Outlet Control Stru	cture Sizing						734.7	G3)RIM	
		t holes sizing - "first e should be releasea							S IST. 9	
	Qff = Vff / 24 hrs / 3	3600 se c	Qff=						RIMS /	
	hff(ave) = 2/3 x (Zff Aff(required) = Off	f - Zo) 7 / 0.62 x sqrt(2*32.2*	hff(ave) = *h) A(required) =						181-00	
	Selected Orifice Dia		, A(required) =	0.066						
	Area of each orifice			0.005				X	(22)(21)	
	Number of orifice h	noles provided =		11	holes at elev.	727.10				
	Check First Flush dis	scharge release time	2							
	Aff(actual) =	/ 7*77 7*6)		0.0600 0.2779				4.9	Ze	100000
	Qff = A x 0.62 x sqrt Tff = Vff / (Qff x 360			26.2		O.K.			* 73	9
	2. Chandalan autor	the less sisters	l. f II flagged at the second						34.50	5' PROTECTION
		charge within 36 to 4	kfull flood" discharge 48 hours						a a	FENCE FENCING MATERIAL TO BE
	Check release from hbf(ave) = 2/3 x (Zb	first flush holes only of - 70)	/ hbf(ave) =	1.53	ft					APPROVED BY WCDC
	Qbf = A x 0.62 x sqrt	t(2*32.2*h) =	Qbf =	0.369	cfs					
	Tbf = Vbf / (Qbf x 3)	600) =	Tbf =	36.4	hr	O.K.				
			sing First Flush holes only							
	Number of orifice h	noles provided =	=	0	holes at elev.	728.40	Г		128	
		t holes sizing - "100-	-yr flood" discharge	2.26	-f -					
	Q100 = Qa Release from above	e holes	Q100 =	2.36	CTS					
	hff = (Z100-Zo)		hff =				¥	*		<u>ک</u>
	$hbf = (Z100-Zff)$ $Q = A \times 0.62 \times sqrt(6)$	54.4*hff) + A x 0.62 x	hbf = sqrt(64.4*hbf) =	4.20 0.70			0, ⁴		×	A CONTRACT OF
	Remaining flow =		Q100-Q=	1.65	cfs					129
	A = Q100 /(.62 x squ Selected Orifice Dia		A(required) =	0.19						
	Area of each orifice			0.0123	sf					K N
	Number of orifice h	holes required =	=	15	holes at elev.	729.40				~ ~ ~
	4. Riser Outlet Pipe									
	Outlet pipe designe 100-year restricted		year restricted flow Q =	2.36	cfs					
	Choose outflow pip	oe diameter =	d =	18	in			ì, N		
	Choose outflow pip Assume roughness		S = n =		%			////		7
		D-yr restricted flow			fps					
	Design Pipe Capaci	ty =	=	4.70	cfs	OK				
										(<i>(C:::::-</i> /
BAS	IN ELEVATIONS	OUTLET RIS	SER DATA (SEE DETA	IL)						
OUTL	.ET 727.10	A OUTL	ET PIPE:	18 IN						
	727.10			0.2%						
BANK	FLUSH 728.40 FULL 729.40			727.02 732.60						
	GN HWL 732.60				S AT EL. 727.1		YPASS MANHOLE			
FORE				THRU FIRST FLU		– – – – –	DRIGINAL DÈSIGN, LLOW UPSTREAM			
TO	гтом 727.10 > 730.00			(15) 1.5 IN. HC 732.85	LES AT EL. 729.4	OF	TE DRAINAGE TO			
				734.00			SS-THROUGH TO Y-FOSTER DRAIN			
		J SPILL	WAY EL.	732.85						
							-	-))		
							-	44,		
		-					LCH		c	
		/ S1	ACKFILL WITH 3" WAS TONE, THEN CHOKE N	WITH	(/	-TOP OF BANK (I)	2.4		
			DOT 6A STONE					4. 		
R EL. ([) / RIM (H)—		48"→ CMP		- HALLANDER		ELEV.(J)			
ς-	. /	\backslash			HARD MALE MARKED V-		\searrow \vdash	4		
100 YF	R. HOLES (G)—			The second se		I-SEEP COLI	$\langle $			
	L HOLES (F)-									
	HOLES (F) \rightarrow			OUTLET PIP	E (A) (B)	FLOW	(C) OUTLET			
					I AR OUTLET P	IPE INTO RIS	·			
			$ \langle \rangle \rangle$		ET HOLES					
		2' SUMP -			MESH RETE BASE P		F	9 1 1 1		
	DET	ENTION B	ASIN STANDP			JUNED IN P	/ -			
			NO SCALE				L			

DESIGN	100 YR I	EL. (D)	/ RIM	(H)—	
	1(00 YR.	HOLES	(G)—	
			HOLES HOLES	• •	




TEE BOX

LANDSCAPE NOTES

92

- 1. THE LANDSCAPE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING LOCATION OF ALL UNDERGROUND AND OVERHEAD UTILITIES. 2. LANDSCAPING OPERATIONS, INCLUDING PLANTING OF TREES AND SHRUBS, SHALL NOT DAMAGE ANY UTILITY OR INTERRUPT ANY UTILITY SERVICE, AND SHALL NOT DAMAGE OR CREATE A NUISANCE AFFECTING ADJACENT PROPERTY, PUBLIC STREETS, OR SIDEWALKS.
- 3. PLANT AND GRASS MATERIALS SHALL BE INSTALLED ACCORDING TO GENERALLY ACCEPTED PLANTING PROCEDURES. 4. ALL PARKING LOT ISLANDS, BOULEVARDS, OPEN OR OTHERWISE DISTURBED AREAS THAT ARE NOT SPECIFIED WITH OTHER PLANTING, PAVING OR SEED MIXTURES SHALL BE PLANTED WITH A STANDARD PERMANENT GRASS SEED MIXTURE TO INDUSTRY STANDARDS. 5. LANDSCAPING MATERIALS THAT ARE UNSIGHTLY, DEAD, DYING, OR THAT BECOME UNHEALTHY BECAUSE OF DAMAGE, NEGLECT, DRAINAGE PROBLEMS, DISEASE, INSECT INFESTATION, OR OTHER CAUSES SHALL BE REPLACED WITHIN ONE YEAR, OR THE NEXT PLANTING PERIOD, WHICHEVER OCCURS FIRST. REPLACEMENT MATERIALS SHALL MEET ALL STANDARDS OF THE ORIGINAL INSTALLATION.
- 6. ALL LANDSCAPED AREAS SHALL BE PROVIDED WITH AN ADEQUATE WATER SUPPLY.
- 7. THE PROPERTY OWNER (OR ANY APPLICABLE OWNER'S ASSOCIATION) SHALL BE RESPONSIBLE TO ENSURE THE PROPER CARE AND MAINTENANCE OF LANDSCAPE AREAS, INCLUDING KEEPING ALL LANDSCAPE MATERIALS IN A HEALTHY AND GROWING STATE. ALL LANDSCAPE ELEMENTS SUCH AS, BUT NOT LIMITED TO, FENCES, SCREENS, WALLS, OR LIGHTING SHALL BE KEPT IN GOOD REPAIR. 8. TOPSOIL REMOVED DURING CONSTRUCTION SHALL BE STOCKPILED IN AN APPROPRIATE MANNER TO PREVENT EROSION, AND SHALL BE REDISTRIBUTED ON RE-GRADED SURFACES TO BE LANDSCAPED, TO PROVIDE A MINIMUM OF FOUR INCHES OF EVEN COVER. THE TOPSOIL SHALL THEN BE PERMANENTLY STABILIZED BY GRASS, GROUND COVER, OR OTHER PLANTINGS. 9. NO PLANT MATERIAL SHALL BE PLANTED CLOSER THAN 4 FEET FROM ANY PROPERTY LINE.
- 10. REMOVE ALL TWINE, WIRE, NURSERY GUARDS, TAGS AND INORGANIC MATERIAL FROM ROOT BALL. PEEL BACK THE BURLAP FROM EARTH BALLS AND REMOVE ANY BURLAP, TWINE OR WIRE AROUND THE TRUNK FLARE AND ABOVE.
- 11. ALL PLANTING AREAS ARE TO BE EXCAVATED OF ALL BUILDING / CONSTRUCTION AND FILL MATERIALS AND BACKFILLED WITH GOOD MEDIUM TEXTURED PLANTING SOIL. SEEDING AREAS ARE TO BE TREATED WITH 4" OF NEW TOPSOIL AND ROTOTILLED OR OTHERWISE SCARIFIED TO BREAK UP COMPACTION AT LEAST 8" BELOW THE TOPSOIL. 12. TOPSOIL SHALL BE SCREENED AND SUITABLE FOR GROWING VEGETATION AND MEET AT A MINIMUM ASTM D-5268 AND MDOT
- STANDARD SPECIFICATIONS FOR CONSTRUCTION.
- 13. RECOMMENDED PLANTING DATES ARE MARCH 15 TO JUNE 15 AND SEPTEMBER 15 TO NOVEMBER 15. 14. ALL DISTURBED SOIL IN STORMWATER SYSTEMS MUST BE PLANTED WITH PERENNIAL PLANTINGS TO PROVIDE FOR PERMANENT SOIL
- STABILIZATION AS CALLED FOR IN THE SOIL EROSION CONTROL PERMIT. 17. PLANTING SOILS MUST BE AMENDED WITH A COMPOSTED ORGANIC MATERIAL. SOILS MUST BE FREE OF CONSTRUCTION DEBRIS AND SUBSOILS. A RECOMMENDED SOIL BLEND INCLUDES 20 TO 30 PERCENT COMPOST.
- 18. AT THE TIME OF PLANT AND SEED DELIVERY, A WCWRC LANDSCAPE REVIEWER MUST BE PRESENT. THE QUANTITY AND SPECIES DELIVERED WILL BE REVIEWED ON SITE. CONTACT CATIE WYTYCHAK AT WYTYCHAKC@WASHTENAW.ORG OR (734) 222-6813 TO COORDINATE.

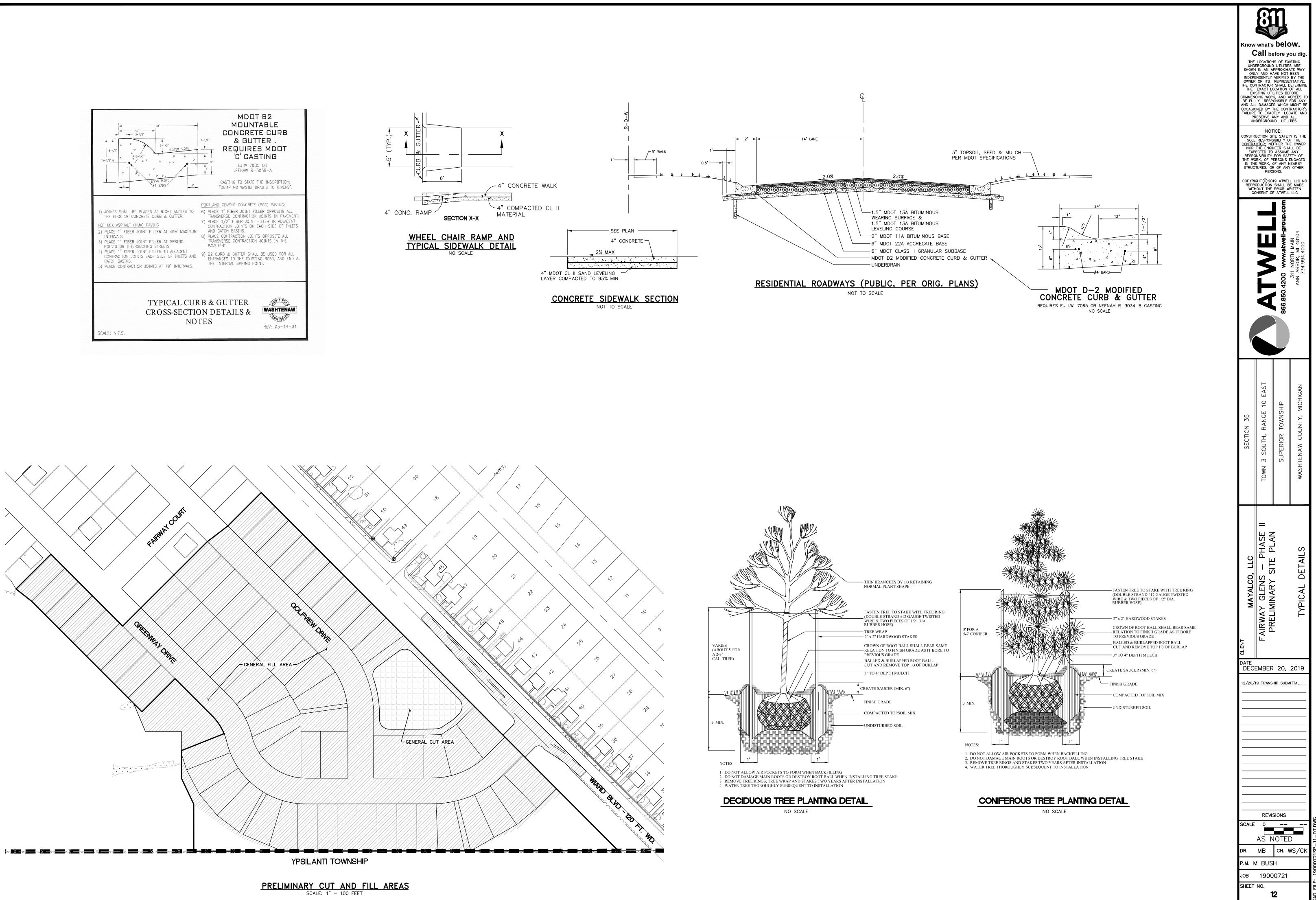
8

Know what's **below**.

THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY

SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINI THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES T BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BI OCCASIONED BY THE CONTRACTOR

OCCASIONED BY THE CONTRACTOR' FAILURE TO EXACTLY LOCATE AN


PRESERVE ANY AND ALL UNDERGROUND UTILITIES.

NOTICE:

CONSTRUCTION SITE SAFETY IS THE SOLE RESPONSIBILITY OF THE <u>CONTRACTOR</u>; NEITHER THE OWNER NOR THE ENGINEER SHALL BE EXPECTED TO ASSUME ANY RESPONSIBILITY FOR SAFETY OF THE WORK OF DEPONS

Call before you dig

6' CYCLONE FENCE

